
1

Intel GFX CI and IGT
What services do we provide, our roadmaps, and lessons learnt!

Martin Peres & Arek Hiler
Feb 3rd 2018

2

Agenda

• Introduction: Linux and its need for CI

• IGT GPU Tools - our testsuite

• State of Intel GFX CI, and future plans

• Lessons learnt

• Dealing with Linux in products

3

Linux and its unique development model

● The Linux kernel is massive:
○ 63 to 70 days between releases
○ 14k commits per release
○ 9 commits per hour in average in the main tree
○ ~1500 developers, 10+% of hobbyists and 250 companies (Intel #1)
○ ~25M lines of code
○ 100s of integration trees and 6 stable trees

https://git.kernel.org/pub/scm/docs/kernel/website.git/tree/content/releases.rst

4

Linux and its unique development model

● The Linux kernel has no architects, but it has rules:
○ No user-visible regression: if updating breaks a program, the change is reverted.
○ Kernel changes need to be open source.
○ No new kernel feature without an open source userspace (especially true for DRM).

5

Why do we need Continuous Integration (CI)?

● Pre-merge testing allows putting the cost of integration on the person making changes:
○ less time spent on bug fixing in post merge (where reverts are hard to get accepted);
○ provides better global understanding to developers;
○ keeps the integration tree in working condition at all time;
○ it scales better with the number of developers!

● Challenges:
○ Keeping the integration tree working is difficult:

■ back merges from Linux bring thousands of line of code without integration testing.

○ Flowing fixes to stable branches may also break them:
■ requires testing the integration of patches for stable trees too.

6

IGT GPU Tools

7

IGT GPU Tools

What is it?
● a collection of tools for development and testing of the DRM drivers
● (actually mostly tests)

What has changed?
● the name (previously Intel GPU Tools)
● mailing list (intel-gfx@fdo -> igt-dev@fdo)
● autotools -> meson

8

IGT Tests

% ./run-tests.sh -l | wc -l
61572(-ish)

% ./run-tests.sh -l | grep amd | wc -l
18

% ./run-tests.sh -l | grep vc4 | wc -l
27

% ./run-tests.sh -l | grep kms | wc -l
1546

% ./run-tests.sh -l | grep gem | wc -l
2379 (59499 with gem_concurrent)

9

IGT: More Than Intel

Why other drivers?
● because they are DRM too
● because KMS is not driver specific
● because APIs have to be consistent across vendors
● because why duplicate effort?

What has to be done?
● better separation of Intel code
● handling multiple GPUs per host

10

Running With Non-Intel Drivers

Nouveau

pass: 125
fail: 77
skip: 4179
warn: 36

total: 4417

VC4

pass: 118
fail: 102
skip: 4184
warn: 2
timeout: 4
dmesg-warn: 2
dmesg-fail: 5

total: 4417

NVIDIA

pass: 20
fail: 510
skip: 3887
warn: 2

total: 4417

A lot of unnecessary kms skips/fails because of Intel-isms = a lot of low hanging fruits.

11

Intel GFX CI

12

Objectives of Intel-GFX-CI

● Provide an accurate view of the state of the HW/SW (all supported combinations).

● Results should be:
○ transparent: Should contain the full HW and SW configuration;
○ fast: Basic results in under 30 minutes, complete ones in half a day;
○ visible: make the results public and hard to miss (reply in ML);
○ stable: noise level should be zero (be aggressive at blacklisting unstable tests);

13

Intel GFX CI - https://intel-gfx-ci.01.org
Current state: provide timely, public, stable and transparent results for:

● Trees:
○ pre-merge: DRM-tip, IGT
○ post-merge: DRM-tip, Linus’ tree, Linux-next, *-fixes, Dave Airlie’s branch

● Machines (total of 74 systems / 21 different platforms (Gen 3 to upcoming Gens)):
○ GDG (Gen3, 2004) -> CNL (not released yet)
○ sharded machines: 7 KBL, 8 HSW, 7 SNB, 8 APL, 6 GLK
○ SKL Xeon
○ GVT-d BDW and SKL (Virtualization)

● Displays interfaces: HDMI, DVI, DP, eDP, DP-MST, DSI, TB, LVDS
● Test suites - IGT:

○ fast-feedback: 288 tests, ran on all machines
○ full KMS + some GEM tests: ~2700 tests, ran on sharded machines

● Throughput
○ from 22k tests/day (Aug 2016) to +850k tests/day (now)
○ bug filing: usually under half a day during working hours

14

15

16

DEMO!

17

Intel-GFX CI: Roadmap
Provide timely, visible, stable and transparent results for:

● Machines:
○ Keep adding new platforms / hardware configurations
○ More display types (including chamelium)

● Test suites:
○ Full IGT on all machines. Requires:

■ Developers to improve IGT to run in < 6 hours (kms, gem, prime)
■ Squashing all patch series in one tree
■ Auto-bisect issues to the offending patch series

○ Performance and rendering. Requires:
■ EzBench support
■ Better prioritization of tasks for machine time

18

Intel-GFX CI: New tools
New tools about to be deployed:

● CI Bug Log NG: a missing link between bug tracking and execution results
○ matches failures to known issues, reducing noise in pre-merge
○ helps with bug filing and tracking
○ is a reimplementation of the original CI Bug Log

● EzBench: auto-bisection of changes in performance, rendering, and unit tests
○ takes care of the variance in results
○ needs more work to get multi-component deployment and bisection

19

Intel-GFX CI: Let’s collaborate!
● Self Tests: If you have Linux self tests that are somewhat related to graphics, network,

sound, or suspend, we can run some of those tests in our farm!

● IGT: Please contribute new tests for KMS and/or your driver!

● Infrastructure: We are looking into Open Sourcing our CI tools!

20

Contacts
Tomi Sarvela

● Infrastructure and most of the automation software

Arkadiusz Hiler

● IGT and FDO’s Patchwork maintainer, back up for Tomi

Martin Peres

● Ezbench and CI bug log maintainer, Bug filing (secondary)

Marta Löfstedt

● Main bug filer, IGT/i915 developer

Petri Latvala

● IGT maintainer, Ezbench

2121

Questions / discussion

22

IGT - The Low Hanging Fruits

● kms_busy, kms_color, kms_draw_crc, kms_frontbuffer_tracking and perf_pmu do
useless modeset just to skip

23

Lessons learnt

24

Key findings to replicate our system

● What is not tested continuously is broken.
● Bug trackers are not a good tool to track test failures.
● Noise is the enemy #1:

○ treat every failure as a bug;
○ run tests in a loop;
○ collect failure statistics and history!

● Make sure developers own the CI system:
○ the CI team works for developers;
○ developers suggest improvements to the systems and improve test suites.

● Have automated metrics for everything!
● Took us a year to get the basic IGT testing stable on 2004+ hardware.

25

What is needed for HW CI
Requirements for making a useful CI system:

○ Infrastructure:
■ physical space;
■ enough power and cooling;
■ power cutters for all machines;
■ reliable network (the simpler the better).

○ Hardware:
■ machines with different configurations (chipsets, RAM, connectors, screens);
■ ways to resume the machine (RTC wake, …).

○ Software:
■ scheduling jobs (Jenkins, ...);
■ components’ compilation automation;
■ automatic deployment and reboot;
■ external watchdog.

○ Humans:
■ good lab engineer to maintain the infrastructure;
■ qualified engineers to file bugs;
■ developers to act quickly on bug reports.

26

Challenges of doing kernel CI

● Booting garbage kernels:
○ boot, network, and/or filesystem broken.

● Getting traces out, especially during suspend/resume:
○ kernel parameters: use “nmi_watchdog=panic,auto panic=1 softdog.soft_panic=1”;
○ use pstore for EFI-capable HW, serial consoles for others.

● Dealing with memory corruptions:
○ will trash your partitions;
○ need automated script to re-deploy machines.

27

CI Bootstrapping

● Step 0: Gather hardware, and test suites
● Step 1: Run the test suites automatically on this hardware
● Step 2: Report failures to a tool that will check if the failure is known
● Step 3: File bugs about unknown failures
● Step 4: When no new failure happen for some time, add to pre-merge
● Step 5: Goto step 0

28

Linux in products

29

Using Linux in products

● Most products using Linux have outdated kernel
○ your phone is likely using Linux 3.10 (June 2013);
○ Linux 3.10.108 is the latest released (November 2017);
○ Linux 4.14 is the latest major version (24 major versions after 3.10).

● Upstream integration reduces your product’s TTM and increase security:
○ see https://wtarreau.blogspot.com/2017/11/look-back-to-end-of-life-lts-kernel-310.html
○ see https://phd.mupuf.org/files/xdc2017_upstream_dev.pdf

https://wtarreau.blogspot.com/2017/11/look-back-to-end-of-life-lts-kernel-310.html
https://phd.mupuf.org/files/xdc2017_upstream_dev.pdf

30

Conclusion

CI makes upstream
development easier!

