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Introduction : Important properties

Wanted properties

Enable users to interact with applications (Input
management);

Enable applications to display content on one or several
screens.

Applications should not be able to (wrt other applications)

eavesdrop : Confidentiality;

tamper : Integrity;

deny service: Availability.
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Security Use Case : Confidentiality

Use cases 0 & 1

The user is shopping online ;

He/she keys in the credit card number;

A keylogger was installed on the computer
or
A program takes periodical screenshots;

His/her credit card number got stolen!
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Security Use Case : Integrity

Use case

The user is visiting his bank’s website;

He/she checks the website address (https + right domain);

He/she is unaware that he/she is visiting a fake website and
that Firefox’s address bar has been redrawn by a malware;

His/her bank information got stolen!
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Security Use Case : Availability

User’s expectation towards availability

Users think their computers do multitasking;

Thus, one app shouldn’t be able to bring the system down;

⇒ Applications should never be able to deny access to other
applications.

Example

Screen locks
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Overview of the Linux graphics stack

Related hardware

Desktops and Laptops;

Smartphones and embedded boards.

Related software on Linux

Linux kernel / DRM (Direct Rendering Manager);

X-Server, Wayland/Weston;

Mesa, cairo...;

Toolkits: Qt, GTK+, EFL...
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Hardware
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Input Management as it should be (Wayland)

Applications

Compositor

Kernel EVDEV

(x1, y1)

(x2, y2)

Mouse
click 0
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Input Management - Security flaws

X11

Any client can be a virtual keyboard : input injection;

Any client can become a keylogger;

Many apps rely on these properties − > unfixable.

Wayland

Same as X11 but fixable because there are no apps yet.
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DRM : Direct Rendering Manager

DRM : Direct Rendering Manager

Inits and configures the GPU;

Performs Kernel Mode Setting (KMS);

Exports privileged GPU primitives:

Create context + VM allocation;
Command submission;
VRAM memory management: GEM & TTM;
Buffer-sharing: GEM & DMA-Buf;

Implementation is driver-dependent.

libDRM

Wraps the DRM interface into a usable API;

Factors-out some code;

Is meant to be only used by Mesa & the DDX;
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DRM : Authentication

DRM : Authentication

The DRM master has all the rights (modeset + GPU usage);

It can also authenticate clients;

Only authenticated clients can use the GPU.

→ No non-privileged apps (even for GPGPU).

D
R
M X-Server /

Compositor
DRM_MASTER

Application
Get_cookie()

cookie

auth(cookie)

answer

cookie

DRM Auth
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Who can be the DRM master?

Needs to have the CAP SYS ADMIN (root);

One master at a time;

The first one to request it gets it;

The DRM master rights can be released.

DRM2 / Render nodes : Spliting the DRM rights

Need for head-less apps (video en/decoding, GPGPU);

Drivers should be able to expose a safe subset of operations:

Request contexts;
Buffer allocation;
Command submission;
Buffer sharing*.

Keep modesetting for DRM MASTERs.
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Buffer-Sharing: GEM vs DMABUF

D
R
M

Compositor

Application
Flink(buffer)

GEM handle

open(handle)

buffer

handle

GEM handle: 
- uint32_t
- global

D
R
M

Compositor

Application
Share(buffer)

fd

open(fd)

buffer

fd

DMABUF fd:
- non-guessable
- purely local

(unix socket)

Buffer:
- GEM buffer ptr

Buffer:
- GEM buffer ptr

GEM Sharing DMABUF Sharing
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Buffer-Sharing: GEM vs DMABUF

Graphics Execution Manager (GEM) buffer sharing

The standard interface for creating, sharing, mapping and
modifying buffers;

Allow buffer sharing: flink() to share (returns a guessable ID),
open() to open a shared buf;

Deprecated by DMA-Buf.

DMA-Buf

GEM flink is unsecure (poor access control once flinked);

GEM flink doesn’t work across drivers (no optimus support!);

DMA-Buf solves the latter and uses file descriptors to identify
shared buffers;

This fd can then be passed on to a process using unix sockets;

The requesting process is responsible for sending the buffer.
15 / 30



Introduction The Linux Graphics stack Hardware/Driver security Conclusion

DRM2 / Render Nodes

DRM2 / Render Nodes

First patchset by David Airlie, second by Kristian Høgsberg;

I then proposed a patchset for the userspace (Nouveau-only):

libdrm: Associate the “normal” and the “render” node;
dri2proto: Add a “requiresAuth” parameter;
XServer: Expose the requireAuth parameter to the ddx;
Nouveau DDX: Use the requireAuth parameter;
Mesa: Open the right device + authenticate if needed.

The TODO list

Fix DRM’s BO mmaping address from per-device to per-fd;

Rework the patches and include more drivers;

Test every combination to check no regression can happen;

Port to Wayland/Weston.
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Application < −− > XServer communication

Application < −− > XServer communication

XLib: Traditionnal X communication medium;

DRI2: Communication between direct GL apps and the
XServer, buffer sharing using GEM;

XSHM: Use SHM instead of copying data in the XLib’s socket.

Buffer management

A client requests a XDrawable allocation via Xlib/XCB/DRI2;

The X-server allocates the buffer an ID;

A client can start rendering inside the buffer.
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Rendering 2D applications

XCB / Xlib

X-Server
File

System

Read cookie from
~/.Xauthority Connect to

$DISPLAY

Application

Authenticate using
the cookie

Connecting to
the X-Server

XCB / Xlib

X-Server

Application

Send X11 drawing 
commands

2D application's
rendering

Send textures
on the wire

or
via XSHM
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XSHM : X SHared Memory

L
I
N
U
X Compositor

Application
shm_open(name) / fd

mmap(fd) / ptr

name

Name:
- const char*

XSHM

shm_open(name) / fd

mmap(fd) / ptr

VM 1

VM 2

RAM

ptr

ptr
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Rendering 3D applications

D
R
M X-Server /

Compositor
DRM_MASTER

Application
Get_cookie()

cookie

auth(cookie)

answer

cookie

DRM Auth

3D application - direct rendering

App. Mesa X-ServerSends GL commands Sends DRI2 commands
share GEM buffers

3D application - indirect rendering

App. Mesa X-ServerGL
commands

DRI2
commandsX-Server GL

commands
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DRI-next

DRI-next : Fixing some of DRI2’s deficiencies

Drop the client authentification (render-node project);

Let the applications allocate their buffers (Wayland-like):

Use DMA-buf instead of GEM flink to share buffers.

Current status & ToDo

Research and toying with unix sockets fd passing;

See http://keithp.com/blogs/fd-passing/
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Why should we care about the driver/hardware security?

Requirements

A driver/hw should not allow privilege escalation and should isolate
GPU users:

Privilege separation: the driver/hw shouldn’t give privileges;

Confidentiality: read access to other buffers;

Integrity: write access to other buffers.

Current status

Good access control to the RAM and VRAM from the CPU;

The GPU may provide read-write-access to the whole
VRAM/Host RAM range to UNIX users through the use of
Shaders/GPGPU/copy-engines (TEGRA 2);

The nVidia driver allows users to access the GPU’s registers.
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Location of the address/memory:

CPU GPU GTT/GART(references RAM)RAM

GTT/GART

GPU virtual address (VRAM + GART)

Providing the GPU with easy access to the Host RAM

Physical address

Device
B

A
R

 0
B

A
R

 1
..

. GART

Process virtual address space (VM)
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CPU MMU
Logical
address

Page
Table

Physical
address CROSSBAR

BIOS

GPU
GPU
MMU

Logical
address

Physical
address

IOMMUBus
address

Host
RAM

GPU

Device

Device

...

Physical
address

Location of functions:

CPU GPU BIOS

programs

Chipset RAM Device

Glossary:
MMU: Memory-Management Unit
IOMMU: Input/Output MMU
BIOS: Basic I/O System

CPU & GPU Memory Requests Routing

Page
Table

Page
Table

(optional)
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Driver/Hardware security : Current solutions

Expose a secure API to the userland

Goal: Users shouldn’t be able to interfere with other GPU users

The kernel should expose a sane API that isolate GPU users;

This API should be the only way for a user to access the GPU;

7→ no regs should be accessible from the userspace!

Restrict GPU’s RAM access rights

Goal: Deny access to the GPU to the kernel’s internal structures or
other programs’ data.

VGA window: The GPU can access the first 1.5MB of RAM;

AGP aperture: Allow GPU access to a fixed part of the RAM;

IOMMU: Programmable MMU for devices to grant RAM
access as needeed where needed.
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Driver/Hardware security : Current solutions

Isolate users in a separate VM

Goal: Restrict a GPU user to its own data by abstraction the
memory address space

Most secure solution;

Increase context-switching delay (problem with DRI2 and Qt5)

Currently used by: Nouveau (geforce 8+);

Could also be used by: AMD (Southern Island+), Intel
(Sandy Bridge+), . . .
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Driver/Hardware security : Current solutions

Isolate users through Command Submission validation

Goal: Restrict a GPU user to its own data by checking the
commands issued by the user

Lower context-switching delay;

Higher CPU usage in kernel space;

Currently used by: Radeon, Intel;

Can be used by: any driver on any card.
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Conclusion

Goals

Make it possible to implement activities and provide secure
isolation between them (like QubesOS/PIGA-OS);

Allow the user to decide what he wants (per-application
isolation vs performance?);

Be ready for GPGPU shared clusters and the soon-to-come
WebGL applications.

Current state

No confidentiality/integrity between applications run by the
same user:
7→The Linux graphics stack make it possible to spy on users.

No input security on X11, Wayland can be secured

DRM2 and DRI-next will improve security
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Thank you for listening!

Martin Peres: martin.peres@labri.fr

Timothée Ravier: timothee.romain.ravier@gmail.com


