
DRI-next/DRM2: A walkthrough the Linux
Graphics stack and its security

Overview, vulnerabilities, attacks and discussions around the
graphic stack’s security

Martin Peres & Timothée Ravier

Ph.D. student at LaBRI, System security engineer

Brussels, 2 & 3 February 2013, FOSDEM

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Summary

1 Introduction

2 The Linux Graphics stack

3 Hardware/Driver security

4 Conclusion

1 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Introduction : Important properties

Wanted properties

Enable users to interact with applications (Input
management);

Enable applications to display content on one or several
screens.

Applications should not be able to (wrt other applications)

eavesdrop : Confidentiality;

tamper : Integrity;

deny service: Availability.

2 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Security Use Case : Confidentiality

Use cases 0 & 1

The user is shopping online ;

He/she keys in the credit card number;

A keylogger was installed on the computer
or
A program takes periodical screenshots;

His/her credit card number got stolen!

3 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Security Use Case : Integrity

Use case

The user is visiting his bank’s website;

He/she checks the website address (https + right domain);

He/she is unaware that he/she is visiting a fake website and
that Firefox’s address bar has been redrawn by a malware;

His/her bank information got stolen!

4 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Security Use Case : Availability

User’s expectation towards availability

Users think their computers do multitasking;

Thus, one app shouldn’t be able to bring the system down;

⇒ Applications should never be able to deny access to other
applications.

Example

Screen locks

5 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Summary

1 Introduction

2 The Linux Graphics stack

3 Hardware/Driver security

4 Conclusion

6 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Overview of the Linux graphics stack

Related hardware

Desktops and Laptops;

Smartphones and embedded boards.

Related software on Linux

Linux kernel / DRM (Direct Rendering Manager);

X-Server, Wayland/Weston;

Mesa, cairo...;

Toolkits: Qt, GTK+, EFL...

7 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Hardware

GPU

CPU

Applications

Qt

gtk

nexuiz

User space

Xorg

xlib x-server
(netw

ork)

libdrm

ddx

mesa

Rasterizer

If UCS*

Kernel space

drm radeon

intel

nouveauUCS: Userspace Command Submission

8 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Input Management as it should be (Wayland)

Applications

Compositor

Kernel EVDEV

(x1, y1)

(x2, y2)

Mouse
click 0

9 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Input Management - Security flaws

X11

Any client can be a virtual keyboard : input injection;

Any client can become a keylogger;

Many apps rely on these properties − > unfixable.

Wayland

Same as X11 but fixable because there are no apps yet.

10 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

DRM : Direct Rendering Manager

DRM : Direct Rendering Manager

Inits and configures the GPU;

Performs Kernel Mode Setting (KMS);

Exports privileged GPU primitives:

Create context + VM allocation;
Command submission;
VRAM memory management: GEM & TTM;
Buffer-sharing: GEM & DMA-Buf;

Implementation is driver-dependent.

libDRM

Wraps the DRM interface into a usable API;

Factors-out some code;

Is meant to be only used by Mesa & the DDX;

11 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

DRM : Authentication

DRM : Authentication

The DRM master has all the rights (modeset + GPU usage);

It can also authenticate clients;

Only authenticated clients can use the GPU.

→ No non-privileged apps (even for GPGPU).

D
R
M X-Server /

Compositor
DRM_MASTER

Application
Get_cookie()

cookie

auth(cookie)

answer

cookie

DRM Auth

12 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Who can be the DRM master?

Needs to have the CAP SYS ADMIN (root);

One master at a time;

The first one to request it gets it;

The DRM master rights can be released.

DRM2 / Render nodes : Spliting the DRM rights

Need for head-less apps (video en/decoding, GPGPU);

Drivers should be able to expose a safe subset of operations:

Request contexts;
Buffer allocation;
Command submission;
Buffer sharing*.

Keep modesetting for DRM MASTERs.

13 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Buffer-Sharing: GEM vs DMABUF

D
R
M

Compositor

Application
Flink(buffer)

GEM handle

open(handle)

buffer

handle

GEM handle:
- uint32_t
- global

D
R
M

Compositor

Application
Share(buffer)

fd

open(fd)

buffer

fd

DMABUF fd:
- non-guessable
- purely local

(unix socket)

Buffer:
- GEM buffer ptr

Buffer:
- GEM buffer ptr

GEM Sharing DMABUF Sharing

14 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Buffer-Sharing: GEM vs DMABUF

Graphics Execution Manager (GEM) buffer sharing

The standard interface for creating, sharing, mapping and
modifying buffers;

Allow buffer sharing: flink() to share (returns a guessable ID),
open() to open a shared buf;

Deprecated by DMA-Buf.

DMA-Buf

GEM flink is unsecure (poor access control once flinked);

GEM flink doesn’t work across drivers (no optimus support!);

DMA-Buf solves the latter and uses file descriptors to identify
shared buffers;

This fd can then be passed on to a process using unix sockets;

The requesting process is responsible for sending the buffer.
15 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

DRM2 / Render Nodes

DRM2 / Render Nodes

First patchset by David Airlie, second by Kristian Høgsberg;

I then proposed a patchset for the userspace (Nouveau-only):

libdrm: Associate the “normal” and the “render” node;
dri2proto: Add a “requiresAuth” parameter;
XServer: Expose the requireAuth parameter to the ddx;
Nouveau DDX: Use the requireAuth parameter;
Mesa: Open the right device + authenticate if needed.

The TODO list

Fix DRM’s BO mmaping address from per-device to per-fd;

Rework the patches and include more drivers;

Test every combination to check no regression can happen;

Port to Wayland/Weston.

16 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Application < −− > XServer communication

Application < −− > XServer communication

XLib: Traditionnal X communication medium;

DRI2: Communication between direct GL apps and the
XServer, buffer sharing using GEM;

XSHM: Use SHM instead of copying data in the XLib’s socket.

Buffer management

A client requests a XDrawable allocation via Xlib/XCB/DRI2;

The X-server allocates the buffer an ID;

A client can start rendering inside the buffer.

17 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Rendering 2D applications

XCB / Xlib

X-Server
File

System

Read cookie from
~/.Xauthority Connect to

$DISPLAY

Application

Authenticate using
the cookie

Connecting to
the X-Server

XCB / Xlib

X-Server

Application

Send X11 drawing
commands

2D application's
rendering

Send textures
on the wire

or
via XSHM

18 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

XSHM : X SHared Memory

L
I
N
U
X Compositor

Application
shm_open(name) / fd

mmap(fd) / ptr

name

Name:
- const char*

XSHM

shm_open(name) / fd

mmap(fd) / ptr

VM 1

VM 2

RAM

ptr

ptr

19 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Rendering 3D applications

D
R
M X-Server /

Compositor
DRM_MASTER

Application
Get_cookie()

cookie

auth(cookie)

answer

cookie

DRM Auth

3D application - direct rendering

App. Mesa X-ServerSends GL commands Sends DRI2 commands
share GEM buffers

3D application - indirect rendering

App. Mesa X-ServerGL
commands

DRI2
commandsX-Server GL

commands

20 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

DRI-next

DRI-next : Fixing some of DRI2’s deficiencies

Drop the client authentification (render-node project);

Let the applications allocate their buffers (Wayland-like):

Use DMA-buf instead of GEM flink to share buffers.

Current status & ToDo

Research and toying with unix sockets fd passing;

See http://keithp.com/blogs/fd-passing/

21 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Summary

1 Introduction

2 The Linux Graphics stack

3 Hardware/Driver security

4 Conclusion

22 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Why should we care about the driver/hardware security?

Requirements

A driver/hw should not allow privilege escalation and should isolate
GPU users:

Privilege separation: the driver/hw shouldn’t give privileges;

Confidentiality: read access to other buffers;

Integrity: write access to other buffers.

Current status

Good access control to the RAM and VRAM from the CPU;

The GPU may provide read-write-access to the whole
VRAM/Host RAM range to UNIX users through the use of
Shaders/GPGPU/copy-engines (TEGRA 2);

The nVidia driver allows users to access the GPU’s registers.

23 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Location of the address/memory:

CPU GPU GTT/GART(references RAM)RAM

GTT/GART

GPU virtual address (VRAM + GART)

Providing the GPU with easy access to the Host RAM

Physical address

Device
B

A
R

 0
B

A
R

 1
..

. GART

Process virtual address space (VM)

24 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

CPU MMU
Logical
address

Page
Table

Physical
address CROSSBAR

BIOS

GPU
GPU
MMU

Logical
address

Physical
address

IOMMUBus
address

Host
RAM

GPU

Device

Device

...

Physical
address

Location of functions:

CPU GPU BIOS

programs

Chipset RAM Device

Glossary:
MMU: Memory-Management Unit
IOMMU: Input/Output MMU
BIOS: Basic I/O System

CPU & GPU Memory Requests Routing

Page
Table

Page
Table

(optional)

25 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Driver/Hardware security : Current solutions

Expose a secure API to the userland

Goal: Users shouldn’t be able to interfere with other GPU users

The kernel should expose a sane API that isolate GPU users;

This API should be the only way for a user to access the GPU;

7→ no regs should be accessible from the userspace!

Restrict GPU’s RAM access rights

Goal: Deny access to the GPU to the kernel’s internal structures or
other programs’ data.

VGA window: The GPU can access the first 1.5MB of RAM;

AGP aperture: Allow GPU access to a fixed part of the RAM;

IOMMU: Programmable MMU for devices to grant RAM
access as needeed where needed.

26 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Driver/Hardware security : Current solutions

Isolate users in a separate VM

Goal: Restrict a GPU user to its own data by abstraction the
memory address space

Most secure solution;

Increase context-switching delay (problem with DRI2 and Qt5)

Currently used by: Nouveau (geforce 8+);

Could also be used by: AMD (Southern Island+), Intel
(Sandy Bridge+), . . .

27 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Driver/Hardware security : Current solutions

Isolate users through Command Submission validation

Goal: Restrict a GPU user to its own data by checking the
commands issued by the user

Lower context-switching delay;

Higher CPU usage in kernel space;

Currently used by: Radeon, Intel;

Can be used by: any driver on any card.

28 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Summary

1 Introduction

2 The Linux Graphics stack

3 Hardware/Driver security

4 Conclusion

29 / 30

Introduction The Linux Graphics stack Hardware/Driver security Conclusion

Conclusion

Goals

Make it possible to implement activities and provide secure
isolation between them (like QubesOS/PIGA-OS);

Allow the user to decide what he wants (per-application
isolation vs performance?);

Be ready for GPGPU shared clusters and the soon-to-come
WebGL applications.

Current state

No confidentiality/integrity between applications run by the
same user:
7→The Linux graphics stack make it possible to spy on users.

No input security on X11, Wayland can be secured

DRM2 and DRI-next will improve security

30 / 30

Thank you for listening!

Martin Peres: martin.peres@labri.fr

Timothée Ravier: timothee.romain.ravier@gmail.com

