DRI-next/DRM2: A walkthrough the Linux
Graphics stack and its security

Overview, vulnerabilities, attacks and discussions around the
graphic stack'’s security

Martin Peres & Timothée Ravier

Ph.D. student at LaBRI, System security engineer

Brussels, 2 & 3 February 2013, FOSDEM

Introduction

Summary

o Introduction

Introduction
©000

Introduction : Important properties

Wanted properties

@ Enable users to interact with applications (Input
management);

@ Enable applications to display content on one or several
screens.

Applications should not be able to (wrt other applications)

@ eavesdrop : Confidentiality;
@ tamper : Integrity;

@ deny service: Availability.

N)

30

Introduction
0e00

Security Use Case : Confidentiality

Use cases 0 & 1

@ The user is shopping online ;
@ He/she keys in the credit card number;

@ A keylogger was installed on the computer
or

A program takes periodical screenshots;

@ His/her credit card number got stolen!

Introduction
coeo

Security Use Case : Integrity

Use case

@ The user is visiting his bank’s website;

@ He/she checks the website address (https + right domain);

@ He/she is unaware that he/she is visiting a fake website and
that Firefox's address bar has been redrawn by a malware;

@ His/her bank information got stolen!

Introduction
oooe

Security Use Case : Availability

User's expectation towards availability
@ Users think their computers do multitasking;
@ Thus, one app shouldn’t be able to bring the system down;

@ = Applications should never be able to deny access to other
applications.

@ Screen locks

The Linux Graphics stack

Summary

© The Linux Graphics stack

6/30

The Linux Graphics stack
[I}

Overview of the Linux graphics stack

Related hardware

@ Desktops and Laptops;

@ Smartphones and embedded boards.

v

Related software on Linux

@ Linux kernel / DRM (Direct Rendering Manager);
e X-Server, Wayland/Weston;

@ Mesa, cairo...;

e Toolkits: Qt, GTK+, EFL...

N

The Linux Graphics stack
oce

P User space
Applications . Hardware
Rasterizer
. Xorg
nexuiz CPU
mesa If UCS*
) ddx
gtk 08&0‘ Kernel space GPU
€ .
xlib X-server libdrm intel
Qt
drm radeon
UCS: Userspace Command Submission e

8/30

The Linux Graphics stack
[I}

Input Management as it should be (Wayland)

Applications 2.
Compositor
(B T —
Mouse
click 0
Kernel

The Linux Graphics stack
oce

Input Management - Security flaws

@ Any client can be a virtual keyboard : input injection;
@ Any client can become a keylogger;

@ Many apps rely on these properties — > unfixable.

@ Same as X11 but fixable because there are no apps yet.

10/30

The Linux Graphics stack
©00000

DRM : Direct Rendering Manager

DRM : Direct Rendering Manager

@ Inits and configures the GPU,;

@ Performs Kernel Mode Setting (KMS);
@ Exports privileged GPU primitives:
Create context + VM allocation;
Command submission;

]
e VRAM memory management: GEM & TTM;
e Buffer-sharing: GEM & DMA-Buf;

@ Implementation is driver-dependent.

libDRM

@ Wraps the DRM interface into a usable API,;
@ Factors-out some code;
@ Is meant to be only used by Mesa & the DDX;

11/30

The Linux Graphics stack
0®0000

DRM : Authentication

DRM : Authentication
@ The DRM master has all the rights (modeset + GPU usage);
@ It can also authenticate clients;
@ Only authenticated clients can use the GPU.
@ — No non-privileged apps (even for GPGPU).

DRM Auth

Get_cookie()
Application I
cookie

cookie

auth(cookie) [X-Server/
Compositor
answer DRM_MASTER

<>X0

12/30

The Linux Graphics stack
00®000

Who can be the DRM master?

@ Needs to have the CAP_SYS_ADMIN (root);
@ One master at a time;

@ The first one to request it gets it;

@ The DRM master rights can be released.

DRM2 / Render nodes : Spliting the DRM rights

@ Need for head-less apps (video en/decoding, GPGPU);
@ Drivers should be able to expose a safe subset of operations:
e Request contexts;
o Buffer allocation;
o Command submission;
o Buffer sharing*.

o Keep modesetting for DRM_MASTERSs.

13/30

The Linux Graphics stack
000®00

Buffer-Sharing: GEM vs DMABUF

GEM Sharing

<>X0

. Flink(buffer)
l Application
GEM handle

handle

e

Buffer:

open(handle)
lCompositor
buffer

GEM handle:

- GEM buffer ptr - uint32_t

- global

DMABUF Sharing

) Share(buffer)
l Application
D fd
(unix socket)
R f
M open(fd)
lCompositor
buffer
Buffer: DMABUF fd:
- GEM buffer ptr - non-guessable
- purely local

14 /30

The Linux Graphics stack
0000®0

Buffer-Sharing: GEM vs DMABUF

Graphics Execution Manager (GEM) buffer sharing

@ The standard interface for creating, sharing, mapping and
modifying buffers;

@ Allow buffer sharing: flink() to share (returns a guessable ID),
open() to open a shared buf;

@ Deprecated by DMA-Buf.

DMA-Buf

e GEM flink is unsecure (poor access control once flinked);

e GEM flink doesn't work across drivers (no optimus support!);

o DMA-Buf solves the latter and uses file descriptors to identify
shared buffers;

@ This fd can then be passed on to a process using unix sockets;

@ The requesting process is responsible for sending the buffer.

15 /30

The Linux Graphics stack
00000e

DRM2 / Render Nodes

DRM2 / Render Nodes

o First patchset by David Airlie, second by Kristian Hggsberg;
@ | then proposed a patchset for the userspace (Nouveau-only):

libdrm: Associate the “normal” and the “render” node;
dri2proto: Add a “requiresAuth” parameter;

XServer: Expose the requireAuth parameter to the ddx;
Nouveau DDX: Use the requireAuth parameter;

Mesa: Open the right device + authenticate if needed.

The TODO list

Fix DRM’s BO mmaping address from per-device to per-fd;

Rework the patches and include more drivers;
Test every combination to check no regression can happen;
Port to Wayland /Weston.

16 /30

The Linux Graphics stack
©0000

Application < —— > XServer communication

Application < —— > XServer communication

@ XLib: Traditionnal X communication medium;

@ DRI2: Communication between direct GL apps and the
XServer, buffer sharing using GEM;

@ XSHM: Use SHM instead of copying data in the XLib's socket.

Buffer management

@ A client requests a XDrawable allocation via Xlib/XCB/DRI2;

@ The X-server allocates the buffer an ID;

@ A client can start rendering inside the buffer.

N

17 /30

The Linux

Graphics stack
©0e®000

Rendering 2D applications

Connecting to
the X-Server

Read cookie from
~/.Xauthority

Application
XCB / Xlib

$DISPLAY

Connect to

Authenticate using
the cookie

2D application's
rendering

Application

XCB / Xlib

Send textures

Send X11 drawing on the wire
commands or
via XSHM

X-Server

18 /30

The Linux Graphics stack
00®00

XSHM : X SHared Memory

XSHM VM1 RAM
shm_open(name) / fd ptr
L Application
I mmap(fd) / ptr
N name VM 2
U ptr
shm_open(name) / fd
X Compositor
mmap(fd) / ptr
Name: — —

- const char*

19/30

The Linux Graphics stack
000®0

Rendering 3D applications

DRM Auth

Get _cookie()

Application
D cookie

R cookie

auth(cookie) [X-Server /
Compositor
answer DRM_MASTER|

3D application - direct rendering
App Sends GL commands Mesa Se::asrlglzléh:obrnfrp;r;ds X-Server

3D application - indirect rendering

GL GL DRI2
App commands X_Server commands Mesa commands X-Server

20/30

The Linux Graphics stack

O000e

DRI-next

DRI-next : Fixing some of DRI2's deficiencies

@ Drop the client authentification (render-node project);
o Let the applications allocate their buffers (Wayland-like):
@ Use DMA-buf instead of GEM flink to share buffers.

v

Current status & ToDo

@ Research and toying with unix sockets fd passing;
o See http://keithp.com/blogs/fd-passing/

21/30

Hardware/Driver security

Summary

e Hardware/Driver security

22/30

Hardware/Driver security
®00

Why should we care about the driver/hardware security?

A driver/hw should not allow privilege escalation and should isolate
GPU users:

@ Privilege separation: the driver/hw shouldn’t give privileges;

@ Confidentiality: read access to other buffers;

@ Integrity: write access to other buffers.

Current status

@ Good access control to the RAM and VRAM from the CPU:

@ The GPU may provide read-write-access to the whole
VRAM/Host RAM range to UNIX users through the use of
Shaders/GPGPU /copy-engines (TEGRA 2);

@ The nVidia driver allows users to access the GPU's registers.

23 /30

Hardware,
oeo

river security

GTT/GART

Providing the GPU with easy access to the Host RAM
Process virtual address space (VM)

| il |

ff Vi — >\ \Physmal address

K

zz:| GART
0| | ~ =~
GPU virtual address (VRAM + GART) P
Location of the address/memory:
[Jeru [JePu [|RAM [|GTT/GART(references RAM) [| Device

24 /30

Hardware/Driver security
ooe

CPU & GPU Memory Requests Routing

Logical Physical
CPU address MMU —qgress
Physical S
address Device
Logical ~N
address | | Ic(?a;ln\t/ilol:gl)u Ai
Device

Glossary:

MMU: Memory-Management Unit
IOMMU: Input/Output MMU

BIOS: Basic I/0 System

Location of functions:

[Jepru [Jchipset [Jepu [|ram [JBios []Device

25 /30

Hardware/Driver security
®00

Driver /Hardware security : Current solutions

Expose a secure API to the userland

Goal: Users shouldn’t be able to interfere with other GPU users
@ The kernel should expose a sane API that isolate GPU users;

@ This API should be the only way for a user to access the GPU;

@ — no regs should be accessible from the userspace!

Restrict GPU’s RAM access rights

Goal: Deny access to the GPU to the kernel’s internal structures or
other programs’ data.

@ VGA window: The GPU can access the first 1.5MB of RAM;
@ AGP aperture: Allow GPU access to a fixed part of the RAM;

e |IOMMU: Programmable MMU for devices to grant RAM
access as needeed where needed.

26 /30

Hardware/Driver security

oeo

Driver /Hardware security : Current solutions

Isolate users in a separate VM

Goal: Restrict a GPU user to its own data by abstraction the
memory address space

Most secure solution;
Increase context-switching delay (problem with DRI2 and Qt5)
Currently used by: Nouveau (geforce 8+);

Could also be used by: AMD (Southern Island+), Intel
(Sandy Bridge+), ...

27 /30

Hardware/Driver security
ooce

Driver /Hardware security : Current solutions

Isolate users through Command Submission validation

Goal: Restrict a GPU user to its own data by checking the
commands issued by the user

@ Lower context-switching delay;
@ Higher CPU usage in kernel space;
@ Currently used by: Radeon, Intel;

@ Can be used by: any driver on any card.

28 /30

Conclusion

Summary

@ Conclusion

29/30

Conclusion

Conclusion

Goals

@ Make it possible to implement activities and provide secure
isolation between them (like QubesOS/PIGA-OS);

@ Allow the user to decide what he wants (per-application
isolation vs performance?);

@ Be ready for GPGPU shared clusters and the soon-to-come
WebGL applications.

Current state

e No confidentiality/integrity between applications run by the
same user:
— The Linux graphics stack make it possible to spy on users.

@ No input security on X11, Wayland can be secured

@ DRM2 and DRI-next will improve security

30/30

Thank you for listening!

Martin Peres: martin.peres®@labri.fr

Timothée Ravier: timothee.romain.ravier@gmail.com

