
Overcoming the Deficiencies of Collaborative
Detection of Spatially-correlated Events in WSN

Martin Peres1, Romain Perier1, and Francine Krief1

Université de Bordeaux, LaBRI
{martin.peres, romain.perier, krief}@labri.fr

Abstract. Collaborative WSN are known to efficiently correlate sen-
sors’ events to detect spatially-correlated events with a low latency. How-
ever, because of the drastic reduction of messages sent to the network
administrator, it is difficult for him/her to understand in what state the
network is. In this paper, we propose a modality-agnostic collaborative
detection of spatio-temporally correlated events that drastically lowers
power consumption by both reducing and localising communication. This
contribution can then be used to expose better auditing capabilities that
overcome the problems usually found in collaborative networks. These ca-
pabilities can in turn be used by both the administrator and the network
itself to, for instance, automatically react to faulty sensors. Experiments
validate the interest of our proposal in an intrusion detection scenario.

Keywords: Wireless Sensor Networks, collaborative event-detection, low-
latency, energy-efficient, autonomic-networking

1 Introduction

As today’s society expects the availability of information in real time on about
anything, the problem of collecting and distributing information from remote or
poorly-accessible places becomes more and more apparent.

The use of Wireless Sensor Networks (WSN) as a mean to lower deployment
cost compared to a traditional wired sensor network is a widely accepted fact.
WSN are already used in several fields such as monitoring air-quality, seismic
activity, forest fires, structural integrity of a building and also area intrusion
detection.

Sensor nodes are small wireless network nodes characterised by their very
low processing power and storage capacity (both ROM and RAM). They are
also characterised by very limited energy resources. Despite these constraints,
sensors are usually expected to be secure and serve data with a relatively low
latency and operate over a long period without swapping their batteries.

As the number of sensor networks grows, less and less human resources can be
used to administrate them. This problem can be addressed by working towards
autonomic and collaborative WSN that would not only lower maintenance but
also improve the quality of service and increase power efficiency.



This research has been conducted during the DIAFORUS project [9]. The
project’s goal is to develop an energy-efficient framework for distributed appli-
cations and functions over redundant unattended sensors. As a demonstration of
the framework, an intrusion detection application was written using redundant
and heterogeneous sensors.

In Sect. 2, we introduce the state of the art concerning distributed and col-
laborative decision-making in Wireless Sensor Networks. Section 3 describes our
proposal and how we believe it can not only reduce power consumption but
also improve collaboration and error reporting. Then, Sect. 4 evaluates the pro-
posal in an intrusion detection scenario and Sect. 5 introduces the future work.
Section 6 concludes the paper.

2 State of the Art

According to [1], the energy cost of transmitting 1 KB over a distance of 100 m
is approximately the same as the cost of executing 3 million instructions by a
100 million instructions per second (MIPS)/W processor. Moreover, with pro-
cessors’ efficiency doubling every 18 months (Koomsley’s law [7]), it is clear that
processor time is getting cheaper and cheaper while communications are bound
by physical properties that limits efficiency improvements.

Based on these facts, it is clear that improving the lifespan of WSNs means
diminishing both the number and the average length of communications.

The following describes common data-processing schemes and architectures
for WSN and compares them from a number and average communication length
point of view.

2.1 The Sink

Wireless Sensor Networks started as simple ad-hoc networks with the informa-
tion flow going from all the sensors to the gateway. Indeed, each sensor node
would collect data from the sensor, average/aggregate it and then send this data
to the gateway. The gateway either processes the information itself, stores it
or sends it through the Internet to another server. This gateway node is often
refered as “the sink” as all the traffic ultimately is routed through him.

In this kind of WSN, sensors’ readings are usually stored before being sent
in batch to limit the number of packets at the expense of latency.

The average communication length on these architectures is the average route
length that links every sensor node to the gateway. As all sensor nodes send data
periodically, this kind of network’s lifespan depends on how often the sensors’
data is sent to the gateway.

2.2 Cluster-based Data Aggregation

A way to lower the average length of communication is to let a data-aggregation
cluster node gather data from his surrounding nodes, aggregate it into a single
message and send it to the gateway.



This architecture introduces two kinds of communications:

– Short-distance: A one-hop communication
– Long-distance: A multi-hop communication to the sink

Long-distance communications should be avoided as much as possible to
lower power consumption in the network. Indeed, they not only consume energy
on both the emitter and gateway, but they also consume the energy of every
routing node in-between. Moreover, nodes around the route are also consuming
more energy because they need to receive and parse at least the MAC header
in order to determine if they are the recipient or not. Finally, since the gateway
is always the ultimate destination for every packet, the closer a node is to the
gateway, the less likely the communication medium is to be available because of
the ever-increasing traffic found when getting closer to the gateway. This further
increases power consumption.

On the other hand, short-distance communications consume energy on a
much more limited zone and more uniformly.

With the cluster-based data aggregation architecture, most communications
are local and thus, spatially spread power consumption more evenly.

2.3 Local Event Detection

Instead of addressing the average communication length problem, local event
detection addresses the problem of the number of messages.

Both the sink and the cluster-based data aggregation architectures rely on
the outside of the network to process data. These architectures are data-oriented
as they only acquire and forward sensors’ data to the gateway.

If the WSN just feeds an application that is run outside the network, then
it is possible to reduce the number of messages by only sending sensors’ data
conditionally [8].

For instance, in an intrusion detection application, it isn’t necessary to con-
stantly send the raw values read by the sensors. Instead, local processing of
sensors’ data avoids unnecessary transmissions by letting the sensor node de-
tects whether the sensor detects something or not.

Local event detection may be challenging for sensor nodes because of their
very tight CPU, ROM and RAM constraints, but it is possible to use digital
signal processing units(DSP) [11] as these processors are getting more and more
efficient [7].

Awareness of the WSN’s application enables sensor nodes to limit the number
of messages they emit by filtering the unneeded information [4][10].

2.4 Collaborative Detection

In spatially-correlated sensor networks, collaborative detection builds on the
concepts of both local data aggregation and cluster-based data aggregation.



Sensors are first locally correlated to filter unneeded information and then,
these information are collected in a cluster in order to correlate all the sensors
of a given area [12][14].

This method further limits the message count by avoiding false positives
induced by defective or ill-calibrated sensors. Less false positives also means
reduced long-distance communications.

This method also works on heterogeneous sensor networks [6][2] and is also
known to produce better results than value-fusion as found in cluster-based data
aggregation when fault-tolerance is needed [3][13].

This architecture provides both a lower average communication distance and
fewer messages in the network because of its aggressive filtering at both the node
level and the cluster level.

However, to our knowledge, already-existing collaborative detection networks
do not abstract the sensor modality. This severely limits the addition of new
sensors at run time since the correlating node needs to be aware of all the sensor
types and know how to correlate them.

Moreover, collaborative detection makes it more difficult for the network
administrator to know if the network is operating correctly because of the low
volume of messages. In case of a detection failure, it also makes it harder for
her/him to debug what went wrong because no logs are available on her/his
work computer.

Finally, because of the correlation found in collaborative detection, it is dif-
ficult for the network administrator to detect faulty sensors.

3 Our proposal

To address the shortcomings of the state-of-the-art collaborative detection, we
propose three different reasoning components:

– modality-agnostic collaborative detection of spatio-temporally correlated events
– offline logging capabilities
– sensors reputation management

3.1 Modality-agnostic Collaborative Detection of Spatio-temporally
Correlated Events

Our proposal is based on the following assumptions:

1. an area defines a spatial zone where all sensors are correlated and can com-
municate with each other;

2. area’s sensors should all detect an intrusion within a definite maximum time
called maximum intrusion time;

3. sensors are noisy and randomly emit false positives;
4. sensors’ may not be reachable at all time;
5. sensors are ill-calibrated.



Assumptions 1 and 2 have to be enforced when sensors are deployed. It also
means network’s lifespan can be improved by using collaborative detection to
lower both the number of messages and the average distance of communications.

Assumptions 3 and 4 mean that the network should be fault-tolerant and
thus, be using decision-fusion [3].

Assumption 5 raises the problem of sensors correlation. Since non-calibrated
sensors’ values cannot be averaged, it means that the values read by the sensor
can only be interpreted by the sensor node that produced it. Indeed, the value
can only be interpreted when put into its context, that is to say, the previous val-
ues/trends. Moreover, decision-fusion mandates the sensor to produce a decision
whether it detects an event or not.

Thus, instead of reporting a given value, a sensor needs to locally correlate
its values then decides if an event is going on or not. If an event is detected, a
confidence rating ranging from 1 to 3 is attributed to the detection.

This proposal abstracts the sensor type and has many additional benefits
such as:

– hiding away calibration errors from the correlation node;
– correlating sensors of arbitrary type.

Messages between the sensors and the reasoning node are sent using a Pub-
lish/Subscriber communication paradigm. This is done to ease the creation of
topic of interests sensors can subscribe to. Moreover, publisher do not have to
know which sensor nodes are interested in. This allows the creation of an highly-
dynamic collaborative behaviour.

In our proposal, individual sensors are required to detect events by themselves
and give a confidence rating ranging from 1 to 3. The algorithm that should be
followed highly depends on the sensor modality and the event that should be
captured. As an example, let’s imagine we want to use a binary infrared optical
barrier to detect a car driving down a street. The signal produced by the sensor
will be a simple square whose length will depend on the speed of the car.

To detect such a square signal, the sensor node can poll the sensor’s value
periodically. The polling period depends on how wide the optical barrier is and
how fast the car is. The maximum speed of the event to detect is one parameter
of the area. As soon as the polled sensor detects something, a correlation timer is
set. If the value sensor keeps on detecting something for, for instance, more than
a tenth of the minimum detection time, then a message (hereinafter referred to
as “alert”) should be sent to the correlation node with the minimal confidence
level. The confidence level should then be increased gradually to 3 as long as the
sensor keeps on detecting the intruder.

When the correlation node receives an event from a sensor (alert), it stores
both the current timestamp and the confidence level into memory for future ref-
erence. Then, it calculates the area criticality level by summing the contribution
of all the sensors of the area.

A sensor’s contribution to the criticality level is the confidence level of the
alert times the age factor. The age factor linearly decreases from 1 to 0 in cor-
relation time seconds. The correlation time should be roughly the same as the



maximum time it takes for an event to happen. In a intrusion detection scenario,
it is the maximum time it takes for a pedestrian to cross the area.

The age factor is important because alerts should expire after some time.
Moreover, older alerts shouldn’t influence the correlation as much as fresh alerts
do. The choice of a linearly decreasing function is motivated by the simplicity of
implementation. It may however need to be adjusted depending on the kind of
application you want to use this system in.

Computing the area’s criticality level is done following (1).

age factor(a) =


0 if alert age(a) > correlation time

1 − alert age(a)

correlation time
otherwise

alert age(a) = current time() − alert timestamp(a)

contrib alert(a) = confidence(a) ∗ age factor(a)

criticality =

alert count∑
a=0

contrib alert(a) (1)

When most sensors from an area simultaneously detect an event, the criti-
cality level of the area should be higher than a threshold that depends on the
number of sensors in the area and the minimal correlation factor we want to
achieve.

When the criticality level goes over the threshold, the correlating node of the
area publishes a message telling that an event has been detected by the area.
This message, hereinafter referred to as alarm, can then be used by other nodes
to trigger automatic actions such as lighting up a light-bulb or an alarm.

Being able to automatically trigger responses to an event enables fully auto-
nomic collaborative WSN.

We also propose that the first node to be added to an area should be “elected”
as the correlating node. However, this node may not be available during the whole
lifespan of the network for the following reasons:

– energy source depletion;
– hardware malfunction;
– selective jamming on this node.

To overcome these challenges, the correlation node role should be split in
two. Both correlation nodes would subscribe to the alerts sent in their area. The
only difference between the two nodes would be that the master node (the first
one elected) would emit an alarm as fast as possible. On the contrary, the slave
correlation node (the second node to be added to the area) would wait for a few
seconds before emitting an alarm unless the master node emits the alarm before
the expiration of the delay.

This proposal increases reliability by avoiding the single point of failure that
was the correlation node. However, a re-election should be made whenever the



master correlation node’s battery is running low or when the slave correlation
node detects that the master isn’t behaving correctly. In this case, the slave
should elect himself as the master and query a list of potential candidates in
order to select a suitable slave node to succeed him. If the slave node becomes
unavailable, the master node should re-elect another slave node.

The election of a correlation node should be made according to these criteria:

– energy available (in Joules, not percentage);
– number of hops to the gateway;
– number of routes to the gateway.

Redundancy could then be further improved by electing n correlation nodes
with an increasing delay between detection and the emission of an alarm. This
works because every node of the area can communicate with each others (as-
sumption 1).

However, redunding the correlation node comes at the expense of power con-
sumption and thus, the network lifespan. Indeed, every correlating node is re-
quired to subscribe and receive every alert and alarm sent by the area and pro-
cess them. As a result, the average power consumption of the correlating nodes
is higher than other nodes in the area. This means there is trade-off between
power consumption and redundancy.

3.2 Offline Logging Capabilities

Due to the drastic message reduction found at the gateway when using in-
network reasoning, auditing the system becomes difficult. Auditing is needed
by the network administrator to understand what is going wrong with the sys-
tem in case of false positives or negative detections.

To address this problem, the correlating node should be required to store
the history of what happened in an area in the past hours or days. Given the
stringent constraints found on sensor nodes, it is impossible to store all the data.
It is thus important to find an efficient way to only keep meaningful data.

The proposed solution stores events. An event is characterised by a local time
stamp, a confidence level and the list of sensors contributing to this event and
their relative contribution to it.

The system can only store a selected few events. When a new event needs to
be stored, a usefulness score is attributed to each event in the history. The event
with the lowest score gets replaced by the new event.

An important event is an event that both drove the confidence level close to
the alarm threshold and was also a local maximum for a long time. However,
when an event gets older, its importance tends to lower. This is why the scoring
system (2) depends on the confidence level of the event, how long it was a local
maximum and the age of the event.

score(e) =
confidence(e) ∗ local max time(e)

1 − age(e)
max storage time

(2)



The history can then be queried on-demand by a network administrator using
a REST-like protocol such as CoAP [5].

3.3 Sensors Reputation Management

The history is not only useful to the network administrator, it is also useful to
the WSN itself. An obvious usage of the history is to juge how useful a sensor
usually is at detecting a certain type of event. We refer to this usefulness score
as reputation.

We separate reputation in two scores:

– False positive: How often are the events emitted by a sensor not correlated
with his surrounding nodes;

– False negative: How often is a sensor not participating in the correlation of
real events.

Both reputations are represented by a value ranging from 0 to 1, 0 being the
lowest possible reputation and 1 being the best.

reputation fp(a, s) =
area detection count involving(a, s)

sensor events count(s)
(3)

False positive reputation is calculated when alerts are deleted from the his-
tory. When an alert is deleted, the detection count (sensor events count(s)) of the
associated sensor is incremented. If the alert has been used to emit an alarm, then
the alarm counter of the associated sensor (area detection count involving(a,s))
is incremented. The false positive reputation is just the ratio of alerts that have
been correlated over the total alert count for a given sensor. The equation is
detailed in (3).

reputation fn(a, s) =
sensor correlated count(s)

area detection count(a)
(4)

False negative reputation is calculated when an event is added to the his-
tory. If the event is an alarm, then the alarm count (area detection count(a))
is incremented. Then, all the sensors that participated to this alarm have their
correlation count incremented (sensor correlated count(s)). False negative repu-
tation is the ratio of how many times a sensor was involved in the emission of
alarms over the total alarm count, the equation is detailed in (4).

Additionally, the reasoning node could alert the administrator when one sen-
sor gets one of his reputations lower than a certain threshold. It can also be
used during the correlation process to weight a sensor contribution according to
its false positive reputation. A lower false positive reputation would result in a
lower contribution during the event correlation.



4 Evaluation

For evaluating our proposal, we used a physical intrusion detection scenario. The
latency of detection should be under 10 seconds and usually around 5 seconds. It
was decided that sensor nodes shouldn’t correlate values for more than 1 second
before sending it to the network. This leaves up to 4 seconds for the network
to carry the detection message and its acknowledgement(ACK). The event is
re-emitted if no ACK is received by the sensor node that emitted the detection
message.

It is however unnecessary to flood the network with alarms when an intru-
sion is detected. Two alarms can be separated by at least the area’s minimum
crossing time unless a new sensor has been correlated with an existing alarm.
This amendum to the rule is made so as the administrator gets new meaningful
information in the timeliest fashion. This proposal enables the administrator to
be aware of the current situation while also limiting the number of messages.

The evaluation has been carried out in a custom-made simulated environment
based on FreeRTOS. Each simulated sensor node is executed as a FreeRTOS
Linux process. When a sensor sends a message, instead of sending it through the
radio like it would be done on real nodes, the message is sent using TCP sockets
to a program called dispatcher. The dispatcher emulates the communication
medium. It forwards the message to the destination node if nodes are within
reach of each other.

The dispatcher gets the sensor nodes’ location from an XML deployment
file. This file not only lists the sensor nodes, their positions and their radio
range, it also contains all the sensor-specific configuration such as what sensors
(modality) are connected to each sensor node and how (i2c address, gpio line,
...). This deployment file is used to generate the node configuration as C header
files that are then compiled and linked with the node’s firmware.

In simulation, the values read by the sensors are generated using a sim-
ulation environment called Diase. This environment, developed for the ANR
DIAFORUS, enables:

– the deployment of a simulated network;
– the creation of intrusion scenarios;
– the monitoring of both sensor nodes and the network.

Monitoring gathers data from the network using a REST protocol for con-
strained applications called CoAP. It then displays the gathered data into a
textual or a graph form.

Figure 1 is a screenshot of Diase running an intrusion scenario.

4.1 Modality-agnostic Collaborative Detection of Spatio-temporally
Correlated Events

Distributed and collaborative detection is meant to lower both the number and
the average length of communications. We evaluate those metrics in this subsec-
tion.



Fig. 1. Diase simulating an intrusion scenario

Sensors are never perfect, if calibrated to detect the smallest event they will
be prone to false positives. We choose to model the detection of an event by a
sensor using a Bernoulli distribution. When no real intrusion is going on, sensors
will have a probability p of wrongly detecting an intrusion and a probability of
1 − p of not detecting one. The experience is repeated every second.

This means we have a probability p of getting a false positive. Knowing this,
we evaluate how many messages are exchanged in different kinds of Wireless Sen-
sor Networks. A distinction between short-distance (no hops) and long-distance
(towards the gateway) communications is also introduced. The number of mes-
sages is then compared to the number of values read by the sensor. This com-
parative study is done for an area of 3 nodes, reading values every second for 30
minutes. The results can be found in Table 1.

WSN type readings short-distance long-distance

Sink 5400 0 (0%) 5400 (100%)
Cluster aggregation 5400 3600 (67%) 1800 (33%)
Local detection 5400 0 (0%) 540 (10%)
Collaborative detection 5400 ≤ 540 (10%) < 180 (3.33%)

Table 1. Comparing WSN data management on a 3-nodes area with a sensor noise
probability (p=0.1, f=1Hz)

In the sink WSN, all sensors readings are forwarded to the gateway every
second to fulfil the 1 second correlation time rule. This only generates long-
distance traffic and is the worst possible case.

In the cluster data aggregation WSN, 2 of the 3 sensors send their values to
the aggregation node. This node aggregates these 2 values with the value of his
sensor in one message before sending it to the gateway. This means 67% of the
traffic is local and 33% of the traffic is long-distance.



In the local event detection, sensors detect intrusions themselves. When they
detect a suspicious event, they forward the acquired value to the gateway. As
the sensor’s probability to detect an event is 10%, then 10% of the values read
are forwarded to the gateway and thus, be considered as long-distance commu-
nications. No short distance traffic is generated.

In the collaborative detection WSN, when sensors detect an event, it is sent
to the correlation node. This node then correlates these events that expire after
a certain amount of time that depends on the maximum time it takes to cross
the area. This means up to 10% of the communications will be local. This value
depends on the number of sensors connected to the correlation node. Telling
how often a long-distance communication will happen is non-trivial because this
highly depends on the algorithm used to correlate the local events.

We now move on to testing the influence of the sensor noise and the corre-
lation time on the number of short-distance and long-distance communications
in our proposal. All these communications are false positives, so lower is bet-
ter. We simulate the worst case scenario, when no sensors are connected to the
correlation node.

Correlation readings short-distance long-distance long
short

ratio

c=10s 5400 545 (10%) 8 (0.15%) 1.5%
c=20s 5400 558 (10.3%) 23 (0.43%) 4.1%
c=40s 5400 541 (10%) 32 (0.59%) 6%
c=60s 5400 516 (9.5%) 33 (0.61%) 6.3%
c=90s 5400 525 (9.7%) 40 (0.74%) 7.7%
c=120s 5400 518 (9.5%) 41 (0.76%) 7.8%
c=150s 5400 552 (10.2%) 50 (0.93%) 9%
c=180s 5400 520 (9.6%) 56 (1.03%) 10.7%

Table 2. Message count in DIAFORUS with noisy sensors (f=1Hz, p=0.1) and a
correlation time c. Experiment time of 30 minutes.

In Table 2, we evaluate the influence of the correlation time over the number
and length of communications. As expected, the number of local detections is
around 10%, which is the sensor noise. Concerning the long-distance communi-
cations, the longer the correlation time, the higher the number of messages. This
can be explained because the longer the correlation time, the higher the proba-
bility of correlation between sensors. Areas should then be as small as possible
to limit the number of false positives.

In Table 3, we evaluate the influence of the sensor noise over the number and
length of communications. As expected, the number of local detections is linear
with the sensor noise. Long distance communications count is increasing with
the sensor noise.

In tables 2 and 3, the number of long distance communications don’t scale
linearly with the correlation time and noise probability because of the no-alarm-



Sensor noise readings short-distance long-distance

p=0 5400 0 (0%) 0 (0%)
p=0.002 5400 11 (0.2%) 0 (0%)
p=0.02 5400 94 (1.7%) 0 (0%)
p=0.1 5400 545 (10%) 56 (1.03%)
p=1 5400 5400 (100%) 210 (3.89%)

Table 3. Message count in DIAFORUS with noisy sensors (f=1Hz, p) and a correlation
time of 180s. Experiment time of 30 minutes.

re-emission policy that is meant to limit the number of messages. In the case of
Table 3, when p=1, we got an average of an alarm every 8.5 seconds even though
the minimum intrusion time was set to 10 seconds. The 15% difference is due
to the amendum to the no-alarm-re-emission policy that states than an alarm
could be re-emitted if a new sensor was correlated with the on-going alarm.

With a relatively small correlation time (60s) and a relative low probability
of false positive (2%), no alarms has been emitted during these 30 minutes. In
normal situations, both the number and the average length of communications
were lowered compared to non-collaborative approaches. Sensors’ average noise
determining the minimum number of messages that will be sent. In the worst
case scenario studied, the number of messages is increased by 3.9% compared to
the “Sink WSN” architecture while the average communication distance tended
towards 0 hops which is an considerable improvement on large scale networks
for both latency and power consumption.

4.2 Sensors Reputation Management

In the previous subsection, we investigated the influence of the average sensor’s
noise and the maximum intrusion duration on the average communication length
and the number of messages. We saw that most of the time, the reasoning node
was able to filter false positives as long as sensors aren’t too noisy. In the case
of a single faulty sensor, it is likely that the administrator will never receive any
information concerning this sensor.

We created one scenario to validate both false positives and negatives. It
features 2 areas which can be seen in Fig. 2.

Area 1 is composed of sensors 1, 2 and 3 and is meant to test false negatives.
An intruder is repeatedly detected by sensors 1 and 2 but is never detected
by sensor 3. No sensor noise was added to ease validation. After some time,
nodes 1 and 2 are expected to have both a perfect false negative and a perfect
false positive reputation while node 3 is expected to have a perfect false positive
reputation but the lowest false negative reputation because it never contributed
to any alarms.

Area 2 is composed of sensors 4, 5 and 6 and is meant to test false positives.
An intruder is repeatedly detected by sensors 5 but is never detected by sensors
4 and 6. Again, no sensor noise was added to ease validation. After some time,



Area 1
Area 2

Node 3, SPIRIT

Node 1, PIR

Node 2, SEISMIC

Node 4, SEISMIC

Node 6, SEISMIC

Node 5, PIR

Map Key

Intruder

Intruder's path

PIR Sensor

Seismic Sensor

SPIRIT Sensor Area

Fig. 2. Scenario validating the reputation. 2 areas, 6 sensors.

nodes 4 and 6 are expected to have both a perfect false negative and a perfect
false positive reputation. However, node 5 is expected to have a perfect false
negative reputation along with the lowest false positive reputation because none
of the alerts it sent led to emission of an alarm.

Node ID False positive reputation False negative reputation

1 & 2 1 (18/18) 1 (283/283)
3 NaN (0/0) 0 (0/283)

4 & 6 NaN (0/0) NaN (0/0)
5 0 (0/9) NaN (0/0)

Table 4. Results of the reputation experiment found on Fig. 2

Results found in Table 4 are perfectly matching the expected reputation
values. These results demonstrate the ability of our proposal to detect both the
false positive and the false negative cases.

The scenario has then been changed to simulate the impact of noise (p=0.1,
f=1Hz) on the sensors’ reputation. The results are shown in Table 5.

With a noise probability (p=0.1, f=1Hz), sensors apparently sent an alert
every 10.7s in average. With a correlation time of 20 seconds, it was pretty likely
for all sensors to be participating in all alarms that were sent during these 30
minutes. This explains the false negative reputation of 1 for all three nodes.

As expected, the false positive reputation of sensors 1, 2 and 3 is quite low.
It would be even lower if not all sensors were faulty or if not all sensors were so
noisy because less alarms would have been sent.



Node ID False positive reputation False negative reputation

1 0.34 (57/168) 1 (119/119)
2 0.34 (57/167) 1 (119/119)
3 0.34 (57/169) 1 (119/119)

Table 5. Reputation of noisy sensors (p=0.1, f=1Hz) after 30 minutes and correlation
time of 20 seconds

5 Future Work

Current research results have been obtained using a simulated network. However,
porting this network on real nodes has been an on-going work for the past few
months and we are currently preparing for final tests of the real network in the
forthcoming weeks to validate the simulation results. The algorithms used by
the simulation are the ones used on the real nodes. This means our proposal is
feasible on standard sensor nodes.

We also would like to improve the reputation management by allowing the
WSN administrator to report false positives and false negatives. This would
increase the accuracy of the sensors’ reputation.

A study should also be carried on to evaluate the power consumption cost of
adding redundancy for the correlation node.

Finally, the influence of sensor density over the number of communications
will be studied.

6 Conclusion

In this paper, we demonstrated a modality-agnostic collaborative detection of
spatio-temporally correlated events. Correlating sensors’ values inside the net-
work instead of forwarding data to the gateway achieves a drastically lower power
consumption by both reducing and localising communication. Our contribution
enhances the state-of-the-art collaborative networks by abstracting sensors which
allows the reasoning node to correlate ill-calibrated heterogeneous sensors. This
abstraction also eases the creation of better auditing capabilities that overcome
the problems usually found in collaborative networks. These capabilities can be
used by both the administrator and the network itself to, for instance, automat-
ically react to faulty sensors.

Acknowledgements

This work is part of research project called DIstributed Applications and Func-
tions Over Redundant Unattended Sensors (DIAFORUS) [9], funded by the
French National Research Agency (ANR).



References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38, 393–422 (2002)

2. Andersson, D., Fong, M., Valdes, A.: Heterogeneous Sensor Correlation: A Case
Study of Live Traffic Analysis (2002)

3. Clouqueur, T., Ramanathan, P., Saluja, K.K., Wang, K.c.: Value-fusion versus
decision-fusion for fault-tolerance in collaborative target detection in sensor net-
works. in proceedings of fourth international conference on information fusion p.
pp. (2001), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.6587

4. Croce, S., Marcelloni, F., Vecchio, M.: Reducing power consumption in wireless
sensor networks using a novel approach to data aggregation. The Computer Journal
51(2), 227–239 (Mar 2008), http://comjnl.oxfordjournals.org/content/51/2/227

5. Frank, B., Shelby, Z., Hartke, K., Bormann, C.: Constrained applica-
tion protocol (CoAP). https://tools.ietf.org/html/draft-ietf-core-coap-03,
https://tools.ietf.org/html/draft-ietf-core-coap-03

6. He, Y., Li, M., Liu, Y.: Collaborative query processing among heterogeneous sensor
networks. In: Proceedings of the 1st ACM international workshop on Heterogeneous
sensor and actor networks. p. 25–30. HeterSanet ’08, ACM, New York, NY, USA
(2008), http://doi.acm.org/10.1145/1374699.1374705

7. Koomey, J., Berard, S., Sanchez, M., Wong, H.: Implications of historical trends in
the electrical efficiency of computing. Annals of the History of Computing, IEEE
33(3), 46 –54 (Mar 2011)

8. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data ag-
gregation in wireless sensor networks. In: Proceedings of the 22nd In-
ternational Conference on Distributed Computing Systems. p. 575–578.
ICDCSW ’02, IEEE Computer Society, Washington, DC, USA (2002),
http://dl.acm.org/citation.cfm?id=646854.708078

9. LaBRI: Diaforus. https://diaforus.labri.fr/doku.php (2010),
https://diaforus.labri.fr/doku.php, [Online; accessed 25-May-2012]

10. Lazzerini, B., Marcelloni, F., Vecchio, M., Croce, S., Monaldi, E.: A fuzzy approach
to data aggregation to reduce power consumption in wireless sensor networks. In:
Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual meeting of the
North American. pp. 436 –441 (Jun 2006)

11. Letian, H., Guangjun, L.: A reconfigurable system for digital signal processing. In:
Signal Processing, 2008. ICSP 2008. 9th International Conference on. pp. 439 –442
(Oct 2008)

12. Nasipuri, A.: Collaborative Detection of Spatially Correlated Signals in Sensor
Networks, vol. Proceedings of the 2005 International Conference on Telecommuni-
cation Systems Modeling and Analysis. Dallas, Texas (Nov 2005)

13. Ould-Ahmed-Vall, E., Heck Ferri, B., Riley, G.: Distributed Fault-Tolerance for
event detection using heterogeneous wireless sensor networks. Mobile Computing,
IEEE Transactions on PP(99), 1 (2011)

14. Phani Kumar, A.V.U., Reddy V, A.M., Janakiram, D.: Distributed col-
laboration for event detection in wireless sensor networks. In: Proceedings
of the 3rd international workshop on Middleware for pervasive and ad-
hoc computing. p. 1–8. MPAC ’05, ACM, New York, NY, USA (2005),
http://doi.acm.org/10.1145/1101480.1101491


