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Abstract—Research in power management is currently limited
by the fact that companies do not release enough documentation
or interfaces to fully exploit the potential found in modern
processors. This problem is even more present in GPUs despite
having the highest performance-per-Watt ratio found in today’s
processors. This paper presents an overview of the power manage-
ment features of modern NVIDIA GPUs that have been found
through reverse engineering. The paper finally discusses about
the possibility of achieving self-management on NVIDIA GPUs
and also discusses the future challenges that will be faced by
researchers to study and improve on autonomic systems.

I. INTRODUCTION

Historically, CPU and GPU manufacturers were aiming
to increase performance as it was the usual metrics used by
consumers to select what to buy. However with the rise of
laptops and smartphones, consumers started preferring higher
battery-life, slimmer, more silent and cooler devices. Noise
was also a concern among some desktop users who started
using water cooling in place of fans. This led CPU/GPU man-
ufacturer to not only take performance into account, but also
performance-per-Watt. A higher performance-per-Watt means
a lower heat dissipation for the same amount of computing
power which in turn allows shrinking the radiator/fan to keep
the processor cool. This results in slimmer and/or more silent
devices. Decreasing power usage is also a major concern
of datacenters and supercomputers as they already consumed
1.5% of the electricity production in the USA in 2007 [1].

As power management (PM) is a non-functional/auxiliary
feature, it is usually non-standard, poorly documented and/or
kept secret. As some PM features require the intervention of
the host system, a driver is often needed to obtain the best
performance-per-Watt. This is not a problem for closed-source
OS such as Microsoft WindowsTMor Mac OSTMas the manu-
facturer usually supplies a binary driver for these platforms. It
is however a major problem for Open Source operating systems
like Linux as those features are not documented and cannot
be re-implemented easily in an Open Source manner.

The absence of documentation and the lack of open hard-
ware also sets back research as researchers are limited to using
the documented PM features. This lack of documentation is
most present in the GPU world, especially with the company
called NVIDIA which has been publicly shamed for that reason
by Linus Torvalds [2], creator of Linux. With the exception of
the ARM-based Tegra, NVIDIA has never released enough
documentation to provide 3D acceleration to a single GPU
after the Geforce 4 (2002). Power management was never

supported nor documented by NVIDIA. As GPUs are leading
the market in terms of performance-per-Watt [3], they are
a good candidate for a reverse engineering effort of their
power management features. The choice of reverse engineering
NVIDIA’s power management features makes sense as they
are usually preferred in supercomputers such as Titan [4], the
current fastest supercomputer. As a bonus, it would allow many
laptops to increase their battery life when using the Linux
community driver for NVIDIA GPUs called Nouveau [5].

Nouveau is a fork of NVIDIA’s limited Open Source driver,
xf86-video-nv [6] by Stephane Marchesin aimed at delivering
Open Source 3D acceleration along with a port to the new
graphics Open Source architecture DRI [7]. As almost no
documentation from NVIDIA is available, this driver mostly
relies on reverse engineering to produce enough knowledge
and documentation to implement the driver. The Nouveau
driver was merged into Linux 2.6.33, released in 2009, even
though 3D acceleration for most cards have been considered
experimental until 2012. I personally joined the team in 2010
after publishing [8] a very experimental version of power man-
agement features such as temperature reading and reclocking,
which are essential to perform Dynamic Voltage/Frequency
Scaling (DVFS). Since then, power management is being
investigated and implemented in the driver whenever a feature
is well understood.

This paper is an attempt at documenting some of the
features that have been reverse engineered by the Nouveau
team and compare them to the state of the art. Some of the doc-
umented features have also been prototyped and implemented
in Nouveau. A brief evaluation of the GPU power consumption
has also been carried out.

Section II presents an overview of the power-related
functionalities needed to make the GPU work. Performance
counters and their usage is detailed in section III. In section IV,
we document the hardware fail-safe feature to lower tempera-
ture and power consumption. Section V introduces NVIDIA’s
RTOS embedded in the GPU. Finally, section VI presents the
vision of autonomic computing and how NVIDIA GPUs can
fit to this model.

II. GENERAL OVERVIEW OF A MODERN GPU

This section is meant to provide the reader with information
that is important to understand the following sections.
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A. General-Purpose Input/Output (GPIO)

A General-Purpose Input/Output (GPIO) is a pin of a chip
that can be software-selected as a binary input or output at run
time.

Input GPIO pins are used by NVIDIA to sense if the
external power supply or the SLI brige is connected, if the
GPU is overheating (in the case of an external temperature
sensor) or to read the fan rotational speed. Output GPIO pins
are used by NVIDIA to drive a laptop’s backlight, select the
memory and core voltage or adjust the fan speed.

Some GPIO pins can be connected to special features like
hardware pulse-width modulation (PWM) controllers which
allows for instance to vary the amount of power sent to the
fan or the backlight of a laptop’s screen. Some chips also have
a hardware tachometer which calculates the revolution time of
the fan. All these operations could be done in software but they
would require the CPU to wake up at least dozens of times per
second, issue a read/write request through the PCIe [9] port
and then go back to sleep again. Waking up the CPU for such
trivial operations is inefficient and should thus be avoided.

B. Energy sources

A modern desktop GPU draws its power from the PCIe
port or PCIe connectors (6 or 8 pins). The PCIe port and 6-
pin PCIe connectors can each source up to 75W while the
8-pin PCIe connector can source up to 150W.

These power sources all provide different voltages that are
way higher than the operating voltage of the GPU. The DC-
DC voltage conversion is done by the voltage controller which
sources from the PCIe port and connectors and outputs power
to the GPU at its operating voltage. The output voltage is
software-controllable using a GPIO pin. A GPIO pin is also
usually used by cards with PCIe connectors to sense if they
are connected to a power source. This allows NVIDIA’s driver
to disable hardware acceleration when the connectors are not
connected, avoiding the GPU from draining too much current
from the PCIe port. In some cases, a GPIO pin can also control
the emergency shutdown of the voltage controller. It is used
by the GPU to shutdown its power when the card overheats.

There are currently only up to two power domains on
NVIDIA cards, one for the GPU and one for memory. Mem-
ory’s power domain is limited to 2 possible voltages while
the GPU usually has at least 3 and can have up to 32 voltage
possibilities for its power domain.

On some high-end cards, the voltage controller can also
be queried and configured through an I2C interface. Those
expensive controllers can sense the output power along with
the power draw of each of the energy sources.

Figure 1 illustrates a simple view of the power subsystem.

C. Temperature management

Just like modern CPUs, GPUs are prone to overheating.
In order to regulate their temperature, a temperature sensor
needs to be installed. This sensor could be internal to the chip
or be external using an I2C [10] sensor. Usually, external
sensors can also drive a fan’s speed according to the card’s
temperature. When using the internal sensor, the driver is
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Figure 1. Overview of the energy sources of the GPU

usually responsible for polling the temperature and updating
the fan speed.

D. Clock tree

Having the possibility to change frequencies on the fly
is another feature of modern GPUs aimed at lowering power
consumption. On NVIDIA GPUs, there are two clock sources,
the PCIe clock (100 MHz) and an on-board crystal (usually 27
MHz). The frequency of the clocks is then increased by using a
Phase-locked loop (PLL). A PLL takes the input frequency Fin

and outputs the frequency Fout. The relation between Fin and
Fout in the simplest PLL is detailed in equ. 1. The parameters
N and M are integers and have a limited range. This range
depends on the PLL and is usually documented in the Video
BIOS (VBIOS). This means that not all output frequencies are
achievable.

Fout = Fin ∗
N

M
(1)

It would be simplistic to think that the GPU uses a single
clock for the whole card. Indeed, a modern GPU has multiple
engines running asynchronously which are clocked by different
clock domains. There are up to 13 clock domains on Fermi [11]
among which we can find the host, video RAM (VRAM),
shader, copy (asynchronous copy engine) and ROP domains.
The number of clock domains varies depending on the chipset
and the chipset family.

The clock tree has been reverse engineered by using the
performance counters (detailed in section III) which can count
every clock cycle of most clock domains. The clocks can
be read through nvatiming, a tool from the envytools reposi-
tory [12]. This tool should be run before and after modifying
the content of a register that is suspected to configure the
clock tree. As a start, it is possible to check all the registers
NVIDIA’s proprietary driver reads from or writes to when
reclocking the GPU. These reads/writes can be logged by
tracing the Memory-Mapped IO (MMIO) accesses of the
proprietary driver using the MMIO-trace feature of the Linux
kernel [13].

E. The role of the video BIOS

On an IBM-PC-compatible computer, the BIOS is re-
sponsible for the Power-On Self Test (POST). During the
POST phase, the BIOS performs some sanity checks and then
initialises VBIOS peripherals by giving them addresses in the
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linear address space and running their internal BIOS when
applicable.

Similarly, in the case of the video card, the video BIOS
(VBIOS) is responsible for booting up the card enough to
provide the VGA/VESA interface to the host. This interface
is then used by the BIOS and the bootloader to display boot
information on the screen.

In order to bring up this interface, the VBIOS configures
the GPU’s clock tree, configures the memory controllers,
uploads default microcodes to some engines, allocates a frame-
buffer to store the content of the screen and finally performs
graphic mode setting. The VBIOS is then called by the BIOS
when an application on the host requests anything such as
changing the resolution. The VBIOS is written in a 16 bit x86
code and should be considered as being a low-level simple
driver.

As NVIDIA does not select the VRAM chips, the voltage
controller, where the GPIO pins are connected or what graphics
connectors (HDMI, DVI, VGA, DP, etc...) are available, the
card manufacturers need a way to tell the VBIOS how to
set up the card at boot time. This is why NVIDIA stores the
manufacturer-dependent information in tables in the VBIOS.
These tables can be decoded by nvbios, found in the envytools
collection [12]. This collection also contains nvagetbios and
nvafakebios which respectively allow to download the VBIOS
or to upload a new VBIOS non-permanently.

As manufacturers are using the same BIOS for several
cards, some of the tables are indexed by a strap register. This
register’s value is set by the manufacturer by tying some pins
of the GPU to specific voltages.

1) The GPIO & external device tables: They store which
devices or functions are accessible through the chip’s pins
and how to access them. The EXTDEV table references I2C-
accessible devices while the GPIO table only references GPIO-
accessible functions. Both also represent what is accessible by
a number, called a tag or type. In the case of the GPIO table,
each entry contains at least a GPIO pin, the associated tag
(for instance, PANEL PWR), the direction (input or output),
the default state (HIGH or LOW) and if the GPIO is inverted or
not. In the case of the EXTDEV table, each entry contains the
device type/tag, which I2C bus it is accessible on and at which
address. Possible devices could be the ADT7473 which is an
external temperature management unit or the voltage controller
PX3540.

2) The thermal table: Its role is to store temperature-related
parameters, as defined by the OEM. The temperature sensor’s
parameters (offset and slope) can be adjusted. It also de-
fines hysteresis and temperature thresholds such as fan boost,
downclock and shutdown which are respectively defining the
temperature at which the fan should be set to 100%, the
temperature at which the card should be downclocked and
the temperature at which the computer should be shut down.
Finally, the fan response to the temperature can be linear or
trip-point based. The thermal table then stores the parameters
for either method.

3) The performance level table: It specifies up to 4 per-
formance levels. A performance level is defined by a set of
clock speeds, a core voltage, a memory voltage and memory

timings and a PCIe link width speed. The voltage is stored as
an ID that needs to be looked up in the voltage-mapping table.
It is by altering this table that [3] managed to force NVIDIA’s
proprietary driver to set the clocks the way they wanted.

4) The voltage and voltage-mapping tables: The voltage
table contains {Voltage ID, voltage} tuples describing the
various supported voltages and how to configure the volt-
age controller. Those voltages are referenced by the voltage-
mapping table which defines {ID, voltage min, voltage max}
tuples. The voltage min and voltage max parameters of this
table define an acceptable voltage range for the performance
level referencing the ID.

5) The RAM type, timings and timings-mapping tables:
Their role is to tell the driver which memory type and timings
should be set when reclocking memory. The RAM type table
is indexed by the strap. This information is necessary in order
to program the memory controller properly as DDR3, GDDR3
and GDDR5 do not have the same configuration registers. The
timings-mapping table contains several entries, each covering
a memory frequency range. The values of each entry tell how
to configure the memory controllers whenever the driver wants
to use a frequency from within this range. Each entry contains
sub-entries which are indexed by the strap register. Each sub-
entry contains the timing ID of the timings table that should
be used along with some memory-specific parameters. The
timings table contains several entries which are referenced
by the timings-mapping table. Each entry is either the values
that should be written to the memory timings registers or
the aggregation of several parameters that allow the driver to
calculate these values. Unfortunately, the equations to calculate
the values from the parameters greatly varied in the Geforce
8 era and are not completely understood on some GPUs.

F. Reclocking process

Reclocking is the act of changing the frequencies of
the clocks of the GPU. This process drastically affects the
performance and the power consumption of the GPU. The
relation between clocks, power consumption and performance
is very hardware- and task-dependent. There is however a
known relation between the voltage, the frequency of the clock
and the final power consumption for CMOS circuits [14] as
shown by equ. 2 and 3.

P = Pdynamic + Pstatic (2)

Pdynamic = CfV 2 (3)

P is the final power consumption of the circuit and results
from both the dynamic (Pdynamic) and the static (Pstatic)
power consumption of the circuit.

The static power consumption comes from the leakage
power of the transistors when they are not being switched
(clock gated). It can only be lowered by shutting down the
power (power gating) of the units of the GPU that are not in
use. On NVIDIA hardware, power gating an engine can be
done by clearing its associated bit in one register. Patents [15]
and [16] on engine-level power gating from NVIDIA are
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informative about the way power gating may be implemented
on their hardware.

The dynamic power consumption is influenced by the
capacitance of the transistor gates C (which decreases with the
transistor size), the frequency at which the circuit is clocked
f and the voltage at which the circuit operates V . As C
is only dependent on the way transistors where etched, it
cannot be adjusted at run time to lower power consumption.
Only f and V can be adjusted at run time by respectively
reprogramming the clock tree’s PLLs and reprogramming
the voltage controller. While f has an immediate impact on
performance, V has none even though it needs to be increased
with f in order for the chip to be able to meet the needed
switching time. Another way to decrease the dynamic power
consumption is to cut the clock of the parts of the chip that
are not used at the moment to compute something meaningful
(clock gating). The actual implementation by NVIDIA’s has
not been reverse engineered yet but hints of how it works may
be found in patents [17] and [18].

Practical tests showed that reclocking a Geforce GTX
480 can achieve a 28% lower power consumption while only
decreasing performance by 1% for a given task [3].

G. Reclocking a GPU - Rough overview & constraints

Due to the fact that GPUs are almost not documented and
that the driver’s interfaces are mostly closed, DVFS has poorly
been studied in practice on GPUs, contrarily to CPUs. The only
stable open-source implementation of discrete-GPU DVFS that
I know of is available in the Radeon driver [19] and has been
available since 2010. Some insightful comments from one of
the engineer who made this happen are publicly available [20].
Reclocking on NVIDIA GPUs with Open Source software
has been an on-going task since 2010 [8] and I presented
my first experimental DVFS implementation at the X.org
developer conference in 2011 [21]. Since then, Ben Skeggs
has also managed to implement an experimental DVFS support
for some selected cards of the Kepler family which may be
published this year.

The differences found in GPUs compared to CPUs are the
multiple clock domains and the fact that not all clocks can be
adjusted at any time mainly due to the real time constraints
imposed by streaming pixels to the screen. This constraint
is imposed by the CRT Controller (CRTC) which reads the
pixels to be displayed to the screen (framebuffer) from the
video memory and streams it through the VGA/DVI/HDMI/DP
connection. As reclocking memory requires putting the VRAM
in a self-refresh mode which is incompatible with answering
memory requests and as reclocking the PLLs takes a few
microseconds, reclocking cannot be done without disturbing
the output of the screen unless done during the screen’s vertical
blank period. This period was originally introduced to let the
CRT screen move the electron beam from the bottom-right to
the top-left corner. This period lasts about 400 to 500 µs and
is more than enough to reclock memory. However, on a screen
refreshed 60 times per second, vblank only happens every
16.6ms. In the case where the user connects several monitors
to the GPU, the vblank periods are not usually synchronised
which prevents reclocking memory tearlessly on all monitors.
In this case, the NVIDIA binary driver selects the highest
performance level and deactivates DVFS.

Contrarily to memory reclocking, engines reclocking can
be done at any time as long as the GPU is idle. The GPU
can generally be forced to idle by disabling command-fetching
and waiting for the GPU to finish processing. The engine
reclocking process is not fully understood on NVIDIA cards
although I found an empirical solution that managed to reclock
the GPU millions of times without crashing on the Tesla
chipset family. Further investigation is still needed.

III. PCOUNTER : PERFORMANCE COUNTERS

The (hardware) performance counters are a block in mod-
ern microprocessors that count low-level events such as the
number of branch taken or the number of cache hit/miss that
happened while running a 3D or a GPGPU application. On
NVIDIA’s Kepler family, there are 108 different GPGPU-
related monitorable events documented by NVIDIA.

A. Usage

Performance counters provide some insight about how the
hardware is executing its workload. They are a powerful tool
to analyse the bottlenecks of a 3D or a GPGPU application.
They can be accessed through NVIDIA PerfKit [22] for 3D
applications or through Cupti [23] for GPGPU applications.

The performance counters can also be used by the driver
in order to dynamically adjust the performance level based on
the load usage of the GPU and provide DVFS.

Some researchers also proposed to use performance coun-
ters as an indication of the power consumption with an average
accuracy of 4.7% [24].

B. How does it work

The performance counter engine (PCOUNTER) is fairly
well understood thanks to the work of Marcin Kościelnicki.
Here is a short description on how this block works in the
Tesla family (Geforce 8).

PCOUNTER receives hardware events through internal
connections encoded as a 1-bit value which we call signal.
This signal is sampled by PCOUNTER at the rate of clock
of the engine that generated the event. An event counter is
incremented every time its corresponding signal is sampled at
1 while a cycles counter is incremented at every clock cycle.
This simplistic counter is represented by figure 2.

Cycles

Events

Signal

Clock 4

1

Figure 2. Example of a simple performance counter

However, it is expensive to have a counter for all possible
signals. The signals are thus multiplexed. Signals are grouped
into domains which are each clocked by one clock domain.
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There are up to 8 domains which hold 4 separate counters
and up to 256 signals. Counters do not sample one signal,
they sample a macro signal. A macro signal is the aggregation
of 4 signals which have been combined using a function. An
overview of this logic is represented by figure 3.
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Figure 3. Schematic view of a domain from PCOUNTER

The aggregation function allows to specify which combina-
tion of the 4 signals will generate a 1 in the macro signal. The
function is stored as a 16 bit number with each bit representing
a combination of the signals. With sx(t) being the state of
selected signal x (out of 4) at time t, the macro signal will be
set to 1 if the bit s3(t) ∗ 2

3 + s2(t) ∗ 2
2 + s1(t) ∗ 2

1 + s0(t)
of the function number is set.

As an example, to monitor signal s0 only, the aggregation
function should be programmed so as no matter the state of
signals 1, 2 and 3, whenever signal 0 is high, the output of
aggregation function should be high too. As can be seen in
table I, the function number should have all the odd bits set
and all the even bits cleared. The function number is thus
1010101010101010(2).

Table I. TRUTH TABLE TO MONITOR s0 ONLY

s3 s2 s1 s0 Decimal Selection

0 0 0 0 0
0 0 0 1 1 X
0 0 1 0 2
0 0 1 1 3 X
0 1 0 0 4
0 1 0 1 5 X
0 1 1 0 6
0 1 1 1 7 X
1 0 0 0 8
1 0 0 1 9 X
1 0 1 0 10
1 0 1 1 11 X
1 1 0 0 12
1 1 0 1 13 X
1 1 1 0 14
1 1 1 1 15 X

The 4 counters of the domain can be used independently
(quad-event mode) or used together (single-event mode). The
single-event mode allows counting more complex events but
it is not discussed here. PCOUNTER also has a record mode
which allows saving the content of the counters in a buffer in
VRAM periodically so as the driver does not have to poll the
counters as often. The full documentation can be found of at
hwdocs/pcounter.txt in envytools [12]. Most signals are still

unknown although some compute-related signals are already
available on nve4 (Kepler) thanks to the work of Christoph
Bumiller and Ben Skeggs. More signals are currently being
reverse engineered by Samuel Pitoiset [25] as part of his
Google Summer of Code 2013 project.

IV. PTHERM : THERMAL & POWER BUDGET

PTHERM is a piece of hardware that monitors the GPU
in order to make sure it does not overheat or exceed its power
budget.

A. Thermal management

The primary function of PTHERM is to make sure the
GPU does not exceed its temperature budget. PTHERM can
react to some thermal events by automatically set the fan speed
to 100%, by lowering some frequencies of the GPU, or by
shutting down the power to the card.

Reading the temperature from the internal sensor can be
done simply by reading a register which stores the temperature
in degrees Celsius. The sensor’s calibration was performed in
factory and is stored in fuses which allows the GPU to monitor
its temperature at boot time.

PTHERM generates thermal events on reaching several
temperature thresholds. Whenever the temperature reaches a
threshold, an interruption request (IRQ) can be sent to the
host for it to take actions to lower the temperature. The IRQ
can be sent conditionally, depending on the direction of the
temperature (rising, falling or both). The hardware can also
take actions to lower the temperature by forcing the fan to
100% or by automatically lowering the clock frequency. The
latter feature will be explained in the following subsections.
However, only 3 thresholds can generate automatic hardware
response. The others are meant to be used by the driver.

In the case where the GPU is using an external temperature
sensor, hardware events are gathered through the chip’s GPIO
pins which are connected to the external sensor. The external
chip is then responsible for monitoring the temperature and
compare it to certain thresholds. These threshold are pro-
grammable via I2C and are set at boot time during the POST
procedure and again when the driver is loaded by the host
computer.

B. Power reading

Estimating the power consumption can be done in real time
using two different methods.

The first one is to read the power consumption by measur-
ing the voltage drop across a shunt resistor mounted in series
with the chip’s power line. This voltage drop is linear with the
current flowing through this power line with a factor of Rshunt.
The instantaneous power consumption of the chip is then equal
to the voltage delivered by the voltage controller times the
measured current. This method is explained in figure 4.

However, this technique requires an Analog-to-Digital-
Converter and some dedicated circuitry The cost of this solu-
tion is quite high as it requires dedicated hardware on the PCB
of the GPU and a fast communication channel between the
ADC and the chip. Also, fast ADCs are expensive. Therefore, it
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Figure 4. Measuring the power consumption of a chip

explains why only the voltage controllers from high-end cards
can output this information.

Another solution is to monitor power consumption by mon-
itoring the block-level activity inside the chip. As explained
by one of NVIDIA’s patents [26], power consumption can be
estimated by monitoring the activity of the different blocks
of the chip, give them a weight according to the number of
gates they contain, sum all the values, low-pass filter them
then integrate over the refresh period of the power estimator.
This is very much alike the approach explained in [24],
where performance counters were used to compute the power
consumption, except that it is done by the hardware itself. This
solution was introduced by NVIDIA in 2006, is explained in
patent [26] and is told to produce a power estimation every 512
clock cycles of an unspecified clock. In our case, it seems to be
the host clock, sourced by the PCIE port and usually running
at 277 MHz. Polling the power estimation register seems to
validate this theory as the refresh rate seems to be around 540
kHz.

NVIDIA’s method is thus very fast and cheap as it only
needs a small increase of gate count on the GPU. Moreover,
the output of this method can be used internally to dynamically
adjust the clock of some engines to stay inside the power bud-
get. This technique is explained in the following subsection.

Unfortunately, on GPU families Fermi and newer, NVIDIA
stopped specifying the activity block weights which disables
power readings. It is still possible to specify them manually
to get the power reading functionality back. However, those
weights would have to be calculated experimentally.

C. FSRM: Dynamic clock frequency modulation

PTHERM’s role is to keep the GPU in its power and
thermal budget. When the GPU exceeds any of its budget, it
needs to react by lowering its power consumption. Lowering
the power consumption is usually done by reclocking the
GPU but full reclocking cannot be done automatically by the
hardware because it cannot calculate all the parameters and
follow the reclocking process.

Letting the driver reclock the GPU when getting close to
overheating is acceptable and PTHERM can assist by sending
an IRQ to the driver when the temperature reaches some
thresholds. However, in the case where the driver is not doing
its job, because it is locked up or because the driver is not
loaded, the chip should be able to regulate its temperature
without being forced to cut the power of the GPU.

In the case of meeting the power budget, reacting fast to
an over current is paramount to guarantee the safety of the
power supply and the stability of the system in general. It is
thus very important to be able to reclock often.

It is not possible to reprogram the clock tree and adjust the
voltage fast-enough to meet the 540 kHz update rate needed
for the power capping. However, the clock of some engines can
be slowed down. This will linearly affect the dynamic part of
the power consumption albeit not as power efficient as a full
reclocking of the GPU because the voltage is not changed.

A simple way to lower the frequency of a clock is to divide
it by a power of two although the granularity is too coarse to
be used directly for the power capping capability. It is however
possible to lower the average clock frequency by sometimes
selecting the divided clock and then selecting the original clock
the rest of the time. For the lack of a better name, I decided
to call this technique Frequency-Selection Ratio Modulation
(FSRM). FSRM can be implemented by using the output of a
Pulse-Width Modulator (PWM) to a one bit multiplexer. When
the output of the PWM is high, the original clock is being used
while the divided clock is used when the output is low. Any
average clock frequency between the divided clock and the
original clock is thus achievable by varying the duty cycle of
the PWM.
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Figure 5. Frequency of the core clock (@408MHz, 16-divider) when varying
the FSRM

Figure 5 presents the expected frequency response of the
above system along with what has actually been measured
through the performance counters when tested on NVIDIA’s
hardware implementation. Judging by the differences, it seems
like NVIDIA also added a system to smooth the change
between the slowed and the normal clock. The difference
is also likely explained by the fact that the clock selection
may only happen only when both the original and the divided
clock are rising. This also raises the problem of synchronising
the original and the divided clock as the divided clock has
to go through more gates than the original one. In order to
synchronise them, the original clock would have to be shifted
in time by adding redundant gates. This issue is known as
clock skew [27].
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D. FSRM usage & configuration

The FSRM is used to lower PGRAPH clock’s frequency.
PGRAPH is the main engine behind 2D/3D acceleration and
GPGPU, and probably responsible for most of the power
consumption.

There are several events that can trigger use of the FSRM:

• PGRAPH idling;

• Temperature reaching one of the several thresholds;

• Power usage reaching its cap;

• Driver forcing the FSRM.

Whenever one of these events happen, the divided clock
and the FSRM get updated following to their associated
configuration. The clock divisor can be set to 1, 2, 4, 8 or 16
while the FSRM can range from 0 (use the divided clock all the
time) to 255 (use the normal clock all the time). However, even
though each temperature threshold can specify an independent
clock divisor, they have to share the same FSRM.

Some preliminary tests have been performed on an nv84 to
lower the clock to the maximum when PGRAPH is idle and
this resulted in a about 20% power reduction of the computer
while the impact on the framerate of a video game was not
measurable. Some cards do not enable this feature by default,
possibly suggesting that it may lead to some instabilities. This
is however really promising and will be further investigated.

In the case of the power limiter, another mode can be
selected to dynamically update the FSRM. This allows to lower
the frequency of PGRAPH as little as possible in order to
stay in the power budget. This mode uses 2 windows, one
including the other entirely. Each window will increase the
FSRM whenever the power reading is lower than the lowest
threshold of the window and decrease the FSRM when the
reading is above the highest threshold of the window. The
increase and decrease values are independent for both windows
and can be set arbitrarily. However, the outer window is
supposed to increase or decrease the FSRM rapidly while the
inner window is supposed to make finer adjustments.
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Figure 6. Example of the power limiter in the dual window mode

An example can be seen in figure 6 where the outer window
is set to [130W, 100W] while the inner window is set to [120W,
110W]. The outer window will increase the FSRM by 20 when
the power is lower than 100W and will decrease it by 30 when
the power is above 130W. The inner window will increase the
FSRM by 5 when the power is between 120 and 130W and
will decrease it by 10 when the power is between 100 and
110W. The FSRM is limited to the range [0, 255].

E. Power limiter on Fermi and newer

As no power reading is possible by default on GPUs of
the Fermi family and newer, the power limiter cannot be used.
This came to me as a surprise as NVIDIA started advertising
the power limitation on Fermi. This suggests that they may
have implemented another way to read and lower the power
consumption of their GPUs. I unfortunately do not have access
to a card with such feature but the independent and proprietary
tool GPU-Z [28] proposes a way to disable this power cap, as
can be seen on figure 7.

Figure 7. Effect of disabling the power limiter on the Geforce GTX 580.
Copyrights to W1zzard from techpowerup.com.

The first spike would seem to suggest a very slow response
to exceeding the power budget. It is thus possible that NVIDIA
would use its driver to poll the voltage controller’s power
reading and decide to reclock the card to a lower performance
level. Since GPU-Z is proprietary, more reverse engineering
will be needed to understand and document this feature.

V. PDAEMON : AN RTOS EMBEDDED IN YOUR GPU

PDAEMON is an engine introduced on nva3, a late GPU
from the Tesla family. This engine is fully programmable using
the instruction set (ISA) FµC (Flexible MicroCode).

FµC was introduced in nv98 for PCRYPT, an engine meant
to offload some cryptographic operations. FµC was then reused
for PDAEMON and many more engines of the Fermi family.
This feature-rich ISA is now being used to implement some
of the interface between the host and the hardware of some
engines thus bringing a lot more flexibility to the hardware’s
interfaces with the host. An assembler has been written for this
ISA and is available under the name envyas in the envytools
repository [12]. A FµC LLVM backend project was also started
but never gained traction and was later deleted.
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PDAEMON is an engine meant to offload some operations
usually performed by the host driver. It is clocked at 200 MHz,
has a memory management unit (MMU), has access to all the
registers of the GPU and direct access to PTHERM. It also
supports timers, interrupts and can redirect the interrupts from
the GPU to itself instead of the host. Several independent
communication channels with the host are also available.
Surprisingly, it also has performance counters to monitor
some engines’ activity along with its own. In other words,
PDAEMON is a fully-programmable “computer” with low-
latency access to the GPU that can perform more efficiently
whatever operation the host can do. However, it cannot perform
heavy calculations in a timely fashion because of its limited
clock frequency.

For more information about PDAEMON’s capabilities,
please read hwdocs/pdaemon.txt and all the files from hw-
docs/fuc/ found in the envytools repository [12].

A. Usages of PDAEMON

PDAEMON’s usage by NVIDIA has not been fully reverse-
engineered yet. However, the uploaded microcode contains the
list of the processes executed by the RTOS developed by or
for NVIDIA. Here are some of the interesting processes:

• Fan management;

• Power gating;

• Hardware scheduling (for memory reclocking);

• Power budget enforcement;

• Performance and system monitoring.

Its usage list could also be extended to cover:

• Parsing the VBIOS;

• Implementing full DVFS support;

• Generating power-usage graphs.

B. Benefits of using PDAEMON

PDAEMON has clearly been developed with the idea that
it should be able to do whatever the host system can do. One
of the practical advantage of using PDAEMON to implement
power management is that the CPU does not need to be awoken
as often. This lowers the power consumption as the longer the
CPU is allowed to sleep, the greater the power savings are.

Another benefit of using PDAEMON for power manage-
ment is that, even when the host system has crashed, full power
management is still available. This has the benefit of checking
the thermal and power budget of the GPU while also lowering
the power consumption of crashed system.

VI. THE GPU AS AN AUTONOMIC-READY SYSTEM

In 2001, IBM proposed the concept of autonomic com-
puting [29] to aim for the creation of self-managing systems
as a way to reduce their usage complexity. The idea was
that systems are getting more and more complex and, as
such, require more knowledge from the technicians trying to
maintain them. By having self-managing systems, the user

could write a high-level policy that would be enforced by the
system itself, thus hiding complexity.

As an example, a modern NVIDIA GPU could perform the
following self-functions:

self-configuration: The GPU is responsible for finding the
optimal configuration to fill the user-requested tasks.

self-optimization: Using performance counters, the GPU
can optimise performance and also lower its power consump-
tion by using DVFS.

self-healing: As the GPU can monitor its power consump-
tion and temperature, it can also react to destructive behaviours
by lowering the frequency of the clocks.

self-protection: Isolation between users can be provided
by the GPU (integrity and confidentiality) while availability
can be achieved by killing long-running jobs ran by users.
The GPU can also store secrets like HDCP [30] keys or even
encrypt/decrypt data on the fly using PCRYPT.

Although the aim of autonomic computing is primarily
oriented towards lowering human maintenance cost, it can also
be extended to lower the development cost. By having self-
managing subsystems for non-functional features, integration
cost is lowered because of the reduced amount of development
needed to make it work on a new platform. Ideally, a complete
system could be assembled easily by using unmodified auto-
nomic subsystems and only a limited amount of development
would be needed to make their interfaces match.

This approach does not make sense in the IBM-PC-
compatible personal computer market as the platform has
barely evolved since its introduction in the way components
interact (POST procedure, x86 processors and high speed
busses). This renders the development of drivers executed on
the CPU cheaper than having a dedicated processor for the
driver’s operations. However, in the System-On-Chip (SoC)
world where manufacturers buy IPs (intellectual property
blocks) and assemble them in a single-chip system, the
dedicated-processor approach makes a lot of sense as there are
no single processor ISA and operating system (OS) that the IP
manufacturer can depend on. In this context, the slimmer the
necessary driver for the processor and operating system, the
wider the processor and OS choice for the SoC manufacturer.

This is the approach that have chosen Broadcom for his
Videocore technology which is fully controllable by a clearly-
documented Remote Procedure Calls (RPC) interface. This
allowed the Raspberry Pi foundation to provide a binary-driver-
free Linux-based OS on their products [31]. However, the
Open Source driver only uses this RPC interface is thus not a
real driver as it is just some glue code. This led the graphics
maintainer of Linux to refuse including this driver in Linux
as the code running in Videocore is still proprietary and bugs
there are unfixable by the community [32].

Broadcom’s Videocore is a good example of both the
advantage and the drawbacks of autonomic systems. Adding
support for it required very limited work by the Raspberry Pi
foundation but it also means the real driver is now a black
box running on another processor which cannot be traced,
debugged, or modified easily. From a research perspective,
it also means it will become harder to study the hardware
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and propose improvements to the software. In the case of
NVIDIA, this situation could happen if PDAEMON’s code
was not readable and writable by the host system.

VII. CONCLUSION

In this paper, innovative power management features of
NVIDIA GPUs have been partially documented through re-
verse engineering. Even though the reverse engineering work is
incomplete, it is already clear that what has been implemented
in NVIDIA GPUs enhances the state of the art and that a GPU
can be a great test bed for doing power management research.
Moreover, it is already known that these features can be
combined in order to create a self-managed system, following
IBM’s vision on autonomic computing. It is my hope that this
article will spur more interest in the research community to
study, document and improve GPU power management.

Future work will focus on creating a stable reclocking
process across all the modern NVIDIA GPUs in order to create
a testbed for experimenting with DVFS algorithms. More work
will also be done on power and clock gating which are the
two main power management features which have not been
documented yet.
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