
No d’ordre:

THÈSE

Présentée devant

L’UNIVERSITÉ DE BORDEAUX

École Doctorale de Mathématiques et Informatique

pour obtenir le grade de :

DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX

Mention INFORMATIQUE

par

Martin PERES

Laboratoire d’accueil : LABRI
Équipe de recherche : PROGRESS

Titre de la thèse :

A Holistic Approach to Green Networking in Wireless Networks :
collaboration among autonomic systems as a mean towards efficient

resource-sharing

Directrice de thèse: Francine KRIEF
Co-encadrant de thèse: Mohamed Aymen CHALOUF

Soutenue le 19 décembre 2014 devant la commission d’examen:

M. : Raymond NAMYST Pr. à l’Université de Bordeaux, France Président
MM. : Ahmed KARMOUCH Pr. à l’Université d’Ottawa, Canada Rapporteurs

Jean-Marc PIERSON Pr. à l’Université Paul Sabatier, France
MM. : Guillaume FERRÉ MCF à l’Université de Bordeaux, France Examinateurs

Raymond NAMYST Pr. à l’Université de Bordeaux, France
Christian TOINARD Pr. à l’INSA Centre Val de Loire, France

MM. : Francine KRIEF Pr. à l’Université de Bordeaux, France Encadrants
Mohamed Aymen CHALOUF MCF à l’Université de Rennes 1, France

ii

Abstract

The last twenty years saw the emergence of wireless systems in everyday’s life. They
made possible technologies such as mobile phones, WiFi or mobile Internet which are
now taken for granted in today’s society. The environmental impact of Information and
Communications Technology (ICT) has been raising exponentially to equate the impact
of the airline industry. The green computing initiative has been created in response
to this observation in order to meet the 15%-30% reduction in green-house gases by
2020 compared to estimations made in 2002 to keep the global temperature increase
below 2°C. In this thesis, we studied power-saving techniques in wireless networks and
how they interact with each others to provide a holistic view of green networking. We
also take into account the radio frequency resource which is the most commonly used
communication medium for wireless systems and is becoming a scarce resource due to our
society’s ever-increasing need for mobile bandwidth. This thesis goes down the network
stacks before going up the hardware and software stack. Contributions have been made
at most layers in order to propose an autonomic wireless network where nodes can work
collaboratively to improve the network’s performance, globally reduce the radio frequency
spectrum usage while also increasing their battery life.

Keywords Green networking; autonomic computing; power management; distributed
systems; run-time decision engines; reputation management.

iii

iv

Contents

List of Figures xi

List of Tables xvii

Glossary xxi

1 General introduction 1
1.1 General Context . 1
1.2 Problems studied in this thesis . 3

1.2.1 Decentralising data processing . 3
1.2.2 Efficient spectrum sharing . 3
1.2.3 Hardware performance and power consumption 3
1.2.4 Making run-time power management decisions 4
1.2.5 Creating a green network for disaster relief services 5

1.3 Outline of this thesis . 6

2 State of the art 7
2.1 Wireless communications . 8

2.1.1 Transmitting information wirelessly 8
2.1.2 Sharing the spectrum . 9
2.1.3 Applications for wireless communications 11

2.2 Green wireless networks . 12
2.2.1 The overhearing problem . 12
2.2.2 Efficient routing algorithms . 13
2.2.3 Efficient protocols . 16

2.3 Computer architectures . 16
2.4 Autonomic Computing . 18
2.5 Conclusion . 19

3 Application & Network: Decentralised processing 21
3.1 Introduction . 21
3.2 State of the art . 22

3.2.1 Direct communication . 22
3.2.2 Cluster-based Data Aggregation 23
3.2.3 Local Event Detection . 24

v

CONTENTS

3.2.4 Collaborative Detection . 25
3.3 Contributions . 26

3.3.1 Modality-agnostic Collaborative Detection of Spatio temporally
Correlated Events . 27

3.3.2 Offline Logging Capabilities . 32
3.3.3 Sensors Reputation Management 33
3.3.4 Summary . 34

3.4 Evaluation . 35
3.4.1 Modality-agnostic Collaborative Detection of Spatio temporally

Correlated Events . 36
3.4.2 Sensors Reputation Management 39

3.5 Real-life deployment . 41
3.6 Conclusion . 41

4 PHY/MAC: Efficient spectrum sharing 43
4.1 Introduction . 44
4.2 State of the art . 45

4.2.1 Software-defined radios . 45
4.2.2 Cognitive Radio Networks . 47

4.3 Detecting transmissions with software radios 48
4.3.1 Time Domain vs Frequency Domain 48
4.3.2 Filtering in the frequency domain 49
4.3.3 Decoding and collecting statistics 51
4.3.4 Collaborative sensing . 52
4.3.5 Software & Hardware architectures for software radios 55

4.4 PHY-layer signalling protocol . 58
4.4.1 Bootstrapping . 59
4.4.2 Advertising . 59
4.4.3 Scanning for other cognitive radios 60
4.4.4 Updating the hopping pattern . 60
4.4.5 Keeping nodes’ hopping pattern synchronised 61
4.4.6 Evaluation . 62
4.4.7 Conclusion . 67

4.5 MAC-layer signalling protocol . 68
4.5.1 The WTS, RTR and RTS frames 69
4.5.2 Selecting the modulation of the control frames 71
4.5.3 Discussion . 71

4.6 Conclusion . 72

5 Hardware: Defining an autonomic low-power node 75
5.1 Introduction . 76
5.2 General introduction to power management 77

5.2.1 Voltage regulation . 77
5.2.2 Clocks . 79
5.2.3 Transistors . 79

vi

CONTENTS

5.2.4 Storing data : Registers, DRAM, SRAM and Flash 81
5.2.5 Temperature management . 84
5.2.6 Power reading . 84

5.3 Power management features of modern processors 84
5.3.1 Accelerators . 84
5.3.2 Introspection . 85
5.3.3 Clock and Power gating . 87
5.3.4 Dynamic Voltage/Frequency Scaling 89
5.3.5 Thermal & power management . 89
5.3.6 Power Management Unit (PMU) 94
5.3.7 The Boost feature . 95

5.4 Power and performance analysis in modern NVIDIA GPUs 97
5.5 Analysing the reclocking policy of a Kepler NVIDIA GPU 102
5.6 Can modern processors have autonomic power management? 105
5.7 Conclusion . 107

6 OS: Making real-time power management decisions 109
6.1 Introduction . 110
6.2 State of the art . 111

6.2.1 Network interface run-time selection 111
6.2.2 Processor/Accelerator run-time selection 114
6.2.3 Dynamic handovers . 119
6.2.4 Run-time power and performance management generic flowgraph . 120

6.3 Definition of an abstract decision flowgraph 122
6.3.1 Decision flowgraph . 123
6.3.2 Metrics . 123
6.3.3 Prediction . 123
6.3.4 HW Models . 124
6.3.5 Scoring . 125
6.3.6 Decision . 125

6.4 Implementing the decision flowgraph in a framework 125
6.4.1 Metrics . 125
6.4.2 Predictions . 125
6.4.3 Flowgraph . 129
6.4.4 Scoring . 129
6.4.5 Decision . 130

6.5 Evaluation . 130
6.5.1 Network selection WiFi / GSM . 130
6.5.2 Selecting performance levels and processors 133
6.5.3 Performance evaluation . 135

6.6 Conclusion and future work . 137

7 Proposing a green network for disaster relief 139
7.1 Defining the scenario . 139
7.2 Defining wireless nodes : network and system architecture 140

vii

CONTENTS

7.2.1 Node type 1 : Aerial drones . 142

7.2.2 Node type 2 : A fully autonomic wireless tablet 144

7.2.3 Node type 3 : An extremely low-power wireless sensor node 145

7.3 Radio frequency : Continuously selecting the best RF bands 147

7.4 Hardware requirements : Performance and availability 149

7.4.1 Network . 150

7.4.2 Processors and accelerators . 151

7.4.3 Other peripherals . 152

7.5 Conclusion . 153

8 Conclusion 155

8.1 General conclusion . 155

8.2 Future work . 158

8.2.1 Decentralised data processing in Wireless Networks 159

8.2.2 Cognitive Radios Network . 159

8.2.3 Hardware . 160

8.2.4 Green networking with Energy-harvesting nodes 160

Appendices 161

A List of publications 161

A.1 Book chapters . 161

A.1.1 Green Networking . 161

A.2 International conferences . 162

A.2.1 On optimizing energy consumption: An adaptative authentication
level in wireless sensor networks 162

A.2.2 Overcoming the Deficiencies of Collaborative Detection of Spatially
correlated Events in WSN . 162

A.2.3 Power and Performance Characterization and Modeling of GPU-
accelerated Systems . 163

A.2.4 PHY/MAC Signalling Protocols for Resilient Cognitive Radio Net-
works . 163

A.2.5 A run-time generic decision framework for power and performance
management on mobile devices . 164

A.3 International Workshops . 164

A.3.1 Power and Performance Analysis of GPU-Accelerated Systems . . 164

A.3.2 Reverse engineering power management on NVIDIA GPUs - Anatomy
of an autonomic-ready system . 165

B List of Software Projects 167

B.1 Decentralising data processing in surveillance networks 167

B.1.1 Reasoning services . 168

B.1.2 Build network . 168

B.1.3 Diase . 168

viii

CONTENTS

B.2 Efficient spectrum sharing . 168
B.2.1 GR-GTSRC & Spectrum-viz . 168
B.2.2 Hachoir UHD . 169
B.2.3 Non-real-time PHY simulator . 169

B.3 Defining an autonomic low-power node . 169
B.3.1 Nouveau . 169
B.3.2 Envytools . 169
B.3.3 PDAEMON tracing . 170

B.4 Making real-time power management decisions 170
B.4.1 RTGDE . 170

C Diaforus : An example deployment file 171

D DiaSE : DIAFORUS’ Simulation Environment 177
D.1 Deployment . 177
D.2 Running the network . 178
D.3 Scenario . 179
D.4 C2 : Command & Control . 180
D.5 Monitoring . 182

E Real-life deployment of the DIAFORUS Network 187
E.1 Hardware used . 187
E.2 Tested scenarios . 188

E.2.1 A - Short-loop response . 188
E.2.2 B - Inter-area communication . 189
E.2.3 C - Per-area sensitivity settings . 189
E.2.4 D - In-network network notification 190
E.2.5 E - Fault tolerance . 191
E.2.6 F - Protecting a civilian farm . 192

F Demodulating unknown signals 193
F.1 Studying an OOK signal . 193
F.2 Studying a PSK signal . 194
F.3 Conclusion . 196

G A ring buffer data structure suited for SDRs 197

Bibliography 207

ix

CONTENTS

x

List of Figures

2.1 Simplified overview of the Carrier Sense Multiple Access with Collision
Avoidance technique. Source [1]. 10

2.2 Example of network topologies. Source [2]. 14

3.1 Example of a direct communication architecture deployment 23

3.2 Example of a cluster-based aggregation deployment 23

3.3 Example of a local event detection deployment 24

3.4 Example of a collaborative detection deployment 25

3.5 An example of alert re-emission policy depending on the evolution of an
analog sensor’s value . 29

3.6 Example of the evolution of an area’s criticality level 30

3.7 Example of the evolution of an area’s criticality level with regards to the
the history threshold . 33

3.8 The two levels of reasoning . 34

3.9 Screenshot of Diase running an intrusion scenario in real time and injecting
simulated events to the emulated wireless nodes. 37

3.10 Example of the real-time visualisation capabilities of Diase 38

3.11 Scenario validating the reputation. 2 areas, 6 sensors. 40

4.1 A simplified vision of a software-defined radio 45

4.2 A simplified vision of a software-defined radio 46

4.3 Detecting transmissions in the time domain (4.3a, 4.3b) and the frequency
domain (4.3c). Sub-figure 4.3d illustrates the need for filtering the data
from the frequency domain before being usable. 49

4.4 Histogram of the received power at one frequency 50

4.5 Overview of the sensing process - Filling the Radio Event Table from the
software radio’s sample stream . 51

4.6 Collaborative Sensing: CR A performs sensing and detects a new trans-
mission . 52

4.7 Collaborative Sensing: CR A decodes the unknown frames and fills the RET 52

4.8 Collaborative Sensing: CR A did not manage to decode the frame and
queries its neighbouring CRs. 53

4.9 Collaborative Sensing: CR A receives 3 answers to its query and updates
the Radio Event Table. 54

xi

LIST OF FIGURES

4.10 Collaborative Sensing: CR A now updates its maximum emitting power
and neighbours table to remember what the maximum emitting power
that should be used in every band. 54

4.11 Flowgraph of the collaborative sensing process among cognitive radios. . . 55
4.12 Format of the beacon frame . 62
4.13 Influence of the beaconing and sensing-hopping period on the average

rendez-vous delay. 63
4.14 Spectral representation of where a cognitive radio sends its beacons when

having beacon count = 5. 64
4.15 Influence of the number of beacon sent and the sensing radio’s bandwidth

on the average rendez-vous delay. shp = 10ms, bp = 10ms 64
4.16 Variance of the rendez-vous time with shp = 10ms, bp = 10ms, bc = 2, 1

million iterations . 65
4.17 Influence of the beaconing and sensing-hopping period on the average

rendez-vous delay on a hardware radio. 66
4.18 Variance of the rendez-vous time with shp = 10ms, 100000 iterations . . . 67
4.19 Comparing our proposition to [3] and [4] when using a sensing hopping

period and a beaconing period of 10 ms, and software (25 MHz) and hard-
ware radios. 68

4.20 Overview of the MAC signalling protocol 69
4.21 Format of the MAC frames (WTS, RTR then RTS) 71
4.22 Impact of the bitrate on the transmission time of a WTS frame of 50 bytes

using a BPSK modulation (4.22a) and a QPSK modulation (4.22b). . . . 72

5.1 Overview of the energy sources of a discrete NVIDIA GPU 78
5.2 Power amplifier supply voltage for fixed voltage, average power tracking

and Envelope Tracking. Source [5]. 78
5.3 Example of a 4-data-input multiplexer . 79
5.4 Overview of the clock tree for nvclk (core clock) on an NVIDIA nv84 GPU 80
5.5 Schematic of a CMOS inverter gate . 80
5.6 Total chip dynamic and static power dissipation trends based on the In-

ternational Technology Roadmap for Semiconductors [6] 82
5.7 Implementation of a RS flip flop using two NOR gates 82
5.8 Storing one bit using DRAM . 83
5.9 Storing one bit using SRAM . 83
5.10 Measuring the power consumption of a chip 84
5.11 Example of a simple performance counter 87
5.12 Schematic view of a clock domain in NVIDIA’s PCOUNTER engine . . . 87
5.13 Frequency of the core clock (@408MHz, 16-divider) when varying the FSRM 91
5.14 Overview of NVIDIA’s power estimation technique [7]. 92
5.15 Power meter: predicted and actual power of the CPU, processor graphics

and total package. The chart presents the actual measured power and the
architectural power meter reporting for the IA core, processor graphics
and total package. The actual and reported power correlate accurately.
Source: [8] . 93

xii

LIST OF FIGURES

5.16 Example of the power limiter in the dual window mode 93
5.17 Dynamic behavior of the Intel Turbo Boost. After a period of low power

consumption, the CPU and graphics can burst to very high power and
performance for 30 to 60 seconds, delivering a responsive user experience.
After this period, the power stabilizes back to the rated TDP. Source: [8] 96

5.18 Power consumption of our Geforce GTX 660 as its temperature increases.
Measurements done at the lowest and highest possible voltages. 97

5.19 Power consumption of our Geforce GTX 660’s fan depending on the PWM’s
duty cycle. 98

5.20 Power consumption of our Geforce GTX 660 as we vary voltage at a tem-
perature of 32 °C . 99

5.21 Power consumption and execution time of the 512 x 512 matrix addition
program . 100

5.22 Execution time of the Rodina programs 101
5.23 Energy consumption of the Rodina programs 101
5.24 Response of the DVFS policy to a high activity level 102
5.25 Impact of the power usage on the DVFS policy 103
5.26 The action of temperature on the DVFS reclocking policy 104
5.27 The action of temperature on the FSRM 104

6.1 3G Measurements: (a) Average ramp, tranfer and tail energy consumed to
download 50K data. The lower portion of the stacked columns shows the
proportion of energy spent for each activity compared to the total energy
spent. (b) Average energy consumed for downloading data of different
sizes against the inter-transfer time. Source: [9] 111

6.2 GSM Measurements: (a) Average ramp, tranfer and tail energy consumed
to download 50K data. The lower portion of the stacked columns shows the
proportion of energy spent for each activity compared to the total energy
spent. (b) Average energy consumed for downloading data of different
sizes against the inter-transfer time. Source: [9] 112

6.3 Power profiles of 3G and GSM networks. Source: [9] 113
6.4 WiFi Measurements: (a) Average ramp, tranfer and tail energy consumed

to download 50K data. The lower portion of the stacked columns shows the
proportion of energy spent for each activity compared to the total energy
spent. (b) Average energy consumed for downloading data of different
sizes against the inter-transfer time. Source: [9] 113

6.5 WiFi versus 3G versus GSM measurements: Average energy consumed for
downloading data of different sizes against the inter-transfer time. Source: [9]114

6.6 Power savings achieved when running applications on the right core. Source [10].115
6.7 A simple NUMA architecture with two sets of 2-cores processors attached

to 12GB of RAM each. Generated with hwloc [11]. 116
6.8 NVIDIA Optimus Flow. Source: [12]. 118
6.9 Overview of the abstract decision flowgraph 123
6.10 Using ring buffers to implement asynchronous communication between

metrics collection and metrics prediction 126

xiii

LIST OF FIGURES

6.11 GPU Usage: Probability density of transitioning from one state to another
while running a highly predicable GPU load (glxgears) 126

6.12 GPU Usage: Probability density of transitioning from one state to another
in a web browsing scenario . 127

6.13 GPU Usage: Probability density of transitioning from one state to another
in a web browsing scenario . 127

6.14 Example of the output of the “average” prediction method 128

6.15 Example of the output of the default scoring method 129

6.16 Evolution of the power consumption score of the two HW models 131

6.17 Evolution of the emission latency score of the two HW models 131

6.18 Evolution of the RF occupancy score of the two HW models 132

6.19 Evolution of the score of the two HW models along with the decision . . . 132

6.20 Evolution of the CPU usage metric and one prediction 133

6.21 Evolution of the performance level used by the LITTLE model 134

6.22 Evolution of the CPU usage score for the two HW models 135

6.23 Evolution of the power consumption score for the two HW models 135

6.24 Evolution of the score of the two HW models along with the decision . . . 136

6.25 Jitter in the scheduling of decision process on Linux. Data collected during
30 seconds when the system was idle. 136

6.26 Minimum memory usage when using RTGDE or Octave to implement the
decision engine . 137

7.1 SenseFly Swinglet CAM: An autonomous aerial imaging drone [13] 142

7.2 Google Loon Project: Providing Internet access to a large area [14] 143

7.3 Amazon Prime Air: A commercial drone delivery proposed by Amazon [15]143

7.4 An example of rugged tablet that could be used by rescuers [16] 144

7.5 Example of wireless sensor nodes that could be used in a disaster area . . 145

7.6 Example of the spectrum usage done by relays in the proposed network . 147

D.1 Deploying a network using Diase . 178

D.2 Running options for the network (building, running the gateway, running
a simulation) . 178

D.3 Building the network . 179

D.4 Simulating the communication medium with our dispatcher 180

D.5 Simulating a correlation node . 180

D.6 Simulating the intrusion of a car in the DIAFORUS network 181

D.7 Simulating the intrusion of a pedestrian in the DIAFORUS network . . . 181

D.8 Command & Control mode : Visualisation of an alarm in an area along
with which sensors participated in it . 182

D.9 Monitoring mode : Listing the nodes that export CoAP resources 183

D.10 Monitoring mode : Selecting which resource should be added to the current
monitoring view . 183

D.11 Monitoring mode : Example of a monitoring view for a node with both
textual and graphical representations . 185

xiv

LIST OF FIGURES

D.12 Two examples of the real-time graphical representation of the CoAP re-
sources in Diase . 185

E.1 Deployment of some sensors for protecting a farm in a military field . . . 188
E.2 Deployment of some sensors for protecting a farm in a military field . . . 188
E.3 Testing the short-loop scenario on real sensor nodes 189
E.4 Testing the inter-area communication to decrease the intrusion detection

latency . 190
E.5 Testing different area sensitivities . 190
E.6 Testing different area sensitivities . 191
E.7 Result of an intrusion before and after node 2 failed 192
E.8 Final deployment of the DIAFORUS system to protect a farm 192

F.1 Exemple of a received OOK signal . 193
F.2 Exemple of a received 2-PSK signal . 195

xv

LIST OF FIGURES

xvi

List of Tables

3.1 Comparing WSN data management on a 3-nodes area with a sensor false
positive probability (p=0.1, f=1Hz) . 26

3.2 Message count in DIAFORUS with noisy sensors (f=1Hz, p=0.1) and a
correlation time c. Experiment time of 30 minutes. 39

3.3 Message count in DIAFORUS with noisy sensors (f=1Hz, p) and a corre-
lation time of 180s. Experiment time of 30 minutes. 39

3.4 Results of the reputation experiment found on Fig. 3.11 41
3.5 Reputation of noisy sensors (p=0.1, f=1Hz) after 30 minutes and correla-

tion time of 20 seconds . 41

4.1 Comparing different software radios. The USRP X300 cannot listen from
DC to 6GHz continuously, it requires the appropriate daughter-boards
which all have a smaller tunable band. 47

4.2 Kernel-level delay measurements on a USRP1 [17] 56

5.1 Power consumption and execution time of compute-bound program de-
pending on the core and memory clocks. 101

xvii

This page has been intentionally NOT left blank.

Acknowledgements

Firstly, I would like to thank my thesis directors Francine Krief and Mohamed
Aymen Chalouf for introducing me to interesting challenges, providing me
with their continuous feedback, giving me the means to carry out my research
in good conditions and giving me great ideas on how to improve my work.
I would also like to thank Professor Ahmed Karmouch for having me at the
University of Ottawa and supervising my research there.

Not all the technical work found in this thesis is the result of my sole work. I
would thus like to thank all the people I worked with during the ANR projects
Diaforus and Licorne but would like to thank in particular Romain Perier for
working for almost a year with me on the Diaforus project. Not only was
he of great help while designing many of the algorithms found in Diaforus,
but he also implemented most of them along with implementing Diase, the
visualisation GUI we created. I would also like to thank Guillaume Ferré and
his students for our work on the physical layer using software-defined radios
which was really helpful for the Licorne project.

Likewise, I would like to thank all the non-academic colleagues I worked with
and especially the Nouveau developers for teaching me their understanding
of NVIDIA GPUs and for the numerous discussions we had together either
online or in real life. Among many others, I would especially like to thank
Ben Skeggs (the Nouveau maintainer), Marcin Kościelnicki (Envytools main-
tainer), Christoph Bumiller, Ilia Mirkin and Roy Spliet. I would also like to
thank my Google Summer of Code (2013 & 2014) student Samuel Pitoiset
who has been working with me on reverse engineering performance counters
on some NVIDIA cards and who started implementing them in Nouveau. I
would also like to thank Marcin Slusarz for our discussions relative to Nou-
veau and his proof-reading of my hardware-related chapter.

I would also like to thank my other colleagues and fellow PhD students of the
University of Bordeaux and ENSEIRB-MATMECA. However, I would like
to thank in particular Vincent Autefage, Tom Bouvier and Mathieu Barjon
not only for our long discussions, brainstorming on distributed networking
and our long debates on computer science and mathematics, but also for
becoming dear friends. I would also like to thank in particular all the PhD
students of the CVT room and its neighbouring room before thanking all
the other PhD students, research associate and professors I met during my
time in Bordeaux. Outside my work environment, I would like to thank all
the members of the LaBx, the hackerspace of Bordeaux, for sharing their

entire knowledge openly. From this group, I would particularly like to thank
Jonathan BISSON, Thibault Melsbach, Richard Moglia and Zener.

I would also like to thank my family and non-computer-scientist friends who
supported me during my greater-than-usual isolation and lack of communi-
cation without holding grudges. This includes all my Erasmus/exchange stu-
dents friends I met where I studied or during my trips. I am really grateful
to having all of them in my life.

This thesis has been written with a lot of background music which I am
sure contributed greatly to delivering this thesis in time. This includes many
progressive and symphonic rock bands such as Dream Theater, Epica, Gen-
esis, Nightwish, Pink Floyd, Riverside, Rush, Transatlantic, Yes and all the
musical projects of Arjen Anthony Lucassen. I would also like to thank the
highly-energetic bands such as Arch Enemy, Gojira and Pantera for keeping
me awake better than any cup of coffee could ever do.

Glossary

ADC An Analog-to-Digital Converter (ADC) converts a voltage into a digital represen-
tation. This representation is bound by the number of bits of the ADC, for instance,
a 8-bit ADC can only output a representation of the voltage between 0 and 255.
The correspondence between the representation and the actual voltage depends is
linear between the ADC’s Vmin (usually 0 V) and Vmax (usually called Vref). It’s
reverse operation is done by a Digital-to-Analog Converter (DAC) device. 45, 46,
48, 56, 84

CPU Central Processing Unit, the main processor of a computer. The CPU is meant
to execute user-provided applications and the one controlling the other processors
present on the computer. xxvi–xxviii, 1, 5, 25, 49, 56–58, 85, 92, 93, 95, 96, 100,
106, 110, 115, 117–121, 123, 124, 133–138, 149–152, 157, 160, 163–165

CR A Cognitive Radio (CR) is radio communicating with other Cognitive Radios to
form a Cognitive Radio Network (CRN). xxv, xxvi, 45, 47, 48, 51–55, 58–65, 68,
71

CRN A Cognitive Radio Network (CRN) is a network composed of intelligent radios
that are capable of understanding their Radio Frequency environment. They op-
portunistically find the frequency bands that are not in used by the rightful owners
(primary users) and share them among so-called secondary users. An additional
goal of cognitive radios is to keep the network of secondary users connected at all
time and guarantee the QoS requirements of the applications running on top of it.
48, 58, 60, 72

daemon A daemon is a program running in the background of an Operating System
and which does not interact directly with the user. 138

DVFS Dynamic Voltage/Frequency Scaling is a power-saving technique for processors
that consists in dynamically selecting the most efficient performance level of the
processor, based on its load. xxvii, 85, 89, 94, 100–105, 107, 110, 114, 116, 160, 165

FFT A Fast Fourier Transform (FFT) allows converting a signal from the time domain
to the frequency domain. 48, 49, 57, 197

xxi

Glossary

GPGPU General-Purpose computing on Graphics Processing Units. Using a GPU to
perform computations that were usually handled by the CPU. OpenCL is the only
standard for writing GPGPU applications that work on Intel, AMD and NVIDIA
GPUs. However, NVIDIA’s API called CUDA was introduced first and performs
better on NVIDIA GPUs which explains why so many applications prefer using
this API. 86, 88, 96, 97, 100, 110, 117, 119

GPU Graphics Processing Unit. GPUs were introduced as 2D and 3D graphics ac-
celerators for CPUs and are programmable using OpenGL or Direct3D. Recently,
they became more general purpose (GPGPU) with the introduction of CUDA or
OpenCL. xxvi, xxviii, 1, 4, 6, 76–80, 85–90, 93–107, 110, 117–120, 126–128, 138,
150–152, 157, 160, 163–165, 169, 170

HW Hardware. 122, 124, 125, 128–132, 134, 135, 138

I2C Inter-Integrated Circuit. I2C is a serial communication bus invented by Philips in
1982 in order to add low-speed peripherals to traditional computers. 36, 78, 86,
103

interrupt An interrupt is an electrical signal sent by a piece of hardware to a processor
to signal an event that requires the processor’s immediate attention. Interrupts
introduced event-driven processing instead of polling inputs constantly, thus free-
ing resources for more useful purposes and/or lowering the power consumption by
putting the processor to sleep. 78, 88, 90, 95

PLL A Phase-Locked Loop takes a clock as an input and generates an output clock
being a fractional multiple of the input clock. 46, 79, 89, 90

QoS Quality of Service aims at guaranteeing the overall performance of a network on
any combination of the following typical metrics: throughput, transmission delay,
availability, jitter, error rates. QoS is critical for real-time applications such as
audio and/or video streaming but also data logging. 2–6, 16, 73, 110, 114, 120,
122, 125, 130, 141, 144, 148, 152, 156, 158–160, 164

RAM Random Access Memory (RAM) is a storage device that allows data to be written
or read from anywhere in memory with no performance cost, contrarily to hard-
disk drives which have a non-uniform access time. RAM is volatile, which means
that the data is lost after a power-down or a reset, contrarily to Read-Only Memory
(ROM). There are two kinds of RAM, static and dynamic. Dynamic RAM (DRAM)
requires less transistors than static RAM (SRAM) but it requires to be periodically
refreshed. xxvii, 11, 15, 25, 86, 89, 116, 121, 135, 138, 156, 159, 187

RF A Radio Frequency (RF) signal is an electromagnetic signal oscilating between 3
kHz and 300 GHz. xxviii, 2, 3, 6, 8, 19, 44, 46, 47, 52, 64, 67, 73, 78, 124, 130–132,
147, 148, 153

xxii

Glossary

ROM Read-Only Memory. Device that stores data that cannot be modified or is gen-
erally not meant to be modified. ROMs are often used for storing firmwares. 11,
25, 156

RX Reception of a message. 12, 13, 15, 47, 48, 59

SNR Signal-to-Noise Ratio (SNR) is a measure that compares the strength of the wanted
signal compared to the unwanted signals (background noise + other signals). It is
usually expressed in decibels (dB). 9, 11, 48, 49, 52, 70, 71, 78, 196

SW Software. 45, 48

TDP The Thermal Design Power (TDP) is the maximum thermal power the processor’s
heatsink is required to be able to dissipate. xxvii, 91, 95, 96, 100, 103, 107, 150

TX transmission of a message. 12, 47, 48, 58, 70

WSN Wireless Sensor Network. Network composed of multiple inexpensive wireless
nodes that are potentially distributed over a large area to sense their environment.
A WSN is ad-hoc and often used in scientific or industrial applications. xxxi, 2,
11, 13, 22–26, 28, 29, 33, 37–39, 42, 163

xxiii

Glossary

xxiv

Chapter 1

General introduction

Contents

1.1 General Context . 1

1.2 Problems studied in this thesis 3

1.2.1 Decentralising data processing 3

1.2.2 Efficient spectrum sharing . 3

1.2.3 Hardware performance and power consumption 3

1.2.4 Making run-time power management decisions 4

1.2.5 Creating a green network for disaster relief services 5

1.3 Outline of this thesis . 6

1.1 General Context

The last twenty years saw the emergence of wireless systems in everyday’s life. This
trend is mostly due to the increasing need to acquire data in more-and-more remote areas
and also to the convenience mobile devices provide to end users.

Most wireless systems have communication capabilities and are powered by a battery.
As such, they have a maximum usage time before needing to swap or recharge the battery.
This time depends on the capacity of the battery and the power consumption of the
system.

The general public first got introduced to mobile devices in 1973 when presented with
the first hand-held mobile phone. At the time, the battery-life was about 20 minutes
and recharging it took 10 hours [18]. Since then, mobile computing started thriving
with the introduction of laptops which had a very-limited battery-life at first but evolved
to nowadays cover more than a typical work-day. The convergence between laptops
and mobile phones gave birth to smartphones and tablets. These devices feature very-
powerful CPUs and GPUs along with 4G and WiFi network interfaces, allowing the
device to access the Internet almost-everywhere, with a home-like bandwidth.

1

1. GENERAL INTRODUCTION

The general public is not the only user of wireless devices. One of the most widely-
known industrial and scientific application for them is weather monitoring and forecast-
ing. Wireless and autonomous stations have been deployed all around the world to collect
weather data and transmit it via the cellular network or a satellite communication. As
this system is supposed to be streaming data periodically, they cannot be powered with
a battery because they have a fixed capacity and swapping them would require a costly
human intervention. Recharging the batteries can however be done automatically by
harvesting the surrounding energy such as the ambient light, vibrations or radio signals
by respectively using a solar panel, a piezzo-electric element or an antenna.

Although a weather monitoring system can be qualified as a Wireless Sensor Network
(WSN), it is a very simple one because each system/node can reach the telecommunica-
tion infrastructure directly. When the spatial density of nodes increases, it becomes more
cost-effective to make the nodes communicate with each others to route the sensed infor-
mation to a special node with long-distance communication capabilities. This way, nodes
can be fitted with inexpensive short-range communication radios which lower the power
consumption and the size of each node. As the power consumption is lower, these devices
can be powered with less bulky and less expensive batteries which drives the cost down
even more. WSN deployments can be used for crops monitoring for precision agriculture
where only the dry parcels get water. In the same fashion, temperature, humidity, O2

and CO2 levels can be monitored in Greenhouses and warn farmers when any reading is
out of the expected ranges. Some WSN are composed of mobile sensors. When mounted
on drones, they can be controlled remotely and can be relocated dynamically unlike the
cheaper versions that are usually mounted on throw-away balloons. The main example
is weather monitoring with weather balloons.

Mobile or static WSN commonly use the Radio Frequency (RF) spectrum to commu-
nicate. The RF environment is a shared communication medium that can be used by
multiple devices to communicate with one another. Multiple communications can happen
at the same time if the devices are aware of their RF environment or if an exploitation
license has been given to guarantee the exclusive usage of part of the RF spectrum to
the entity controlling this device. Failing in sharing the RF spectrum can have a strong
impact on communications which may result in a Quality of Service (QoS) lower than
needed by the devices and their users. Other possibilities for wireless communications
include sound and light but they usually consume more power and are slower than using
RF communications.

Various degrees of autonomy can be found in wireless devices when it comes to their
internal management, location management for drones and the usage of the RF environ-
ment. Wide-scale distributed systems management are problematic to manage, especially
with the ever-growing complexity of every device that composes it. An increased auton-
omy of the device in order to achieve self-configuration, self-optimisation, self-protection
and self-healing drastically reduce the amount of configuration needed and can result in
a longer-lived system thanks to local decision-making requiring less control messages and
enabling better power management.

2

1.2 Problems studied in this thesis

1.2 Problems studied in this thesis

In this thesis, we present an hollistic approach to wireless systems on the topic of power
management and efficient sharing of the RF spectrum for communications. The study
spans from the hardware to the applications and goes through every network layer of the
TCP/IP model.

1.2.1 Decentralising data processing

Our propositions to lower power consumption of wireless networks are aimed towards
decentralising decision-making in order to increase the autonomy of individual nodes.
With all the information needed locally, the device can self-optimise to lower its power
consumption within the boundaries set by the needed QoS.

This autonomy can also drastically reduce the number of messages, increase the relia-
bility of the network through automatic re-organisation and can improve auditability in
certain circumstances.

This thesis studies the challenges associated with decentralisation in wireless networks
and their mitigation. These problems are mainly demonstrated through an heterogeneous
and redundant wireless sensor network aimed towards physical-intrusion detection.

1.2.2 Efficient spectrum sharing

Spectrum-sharing is usually done by a regulation entity who attributes licences to
companies or usages. These licences allow their recipient to use a band of the RF spec-
trum with a given transmission technology. Some bands do not require a licence but still
require to comply with some rules.

While these regulations statically make sure that the needed QoS by every company
is met at any point of the territory, it often results in so-called white spaces when a
company does not use use its licence everywhere on the territory. Detecting those white-
spaces and sharing them with other so-called secondary users can be used to increase the
bandwidth of the dynamic spectrum-sharing users. A user performing this collaboration
is called a cognitive radio.

This thesis proposes a set of protocols to achieve a large scale cognitive network and
studies the added-constraints onto the hardware, operating system of all the devices of
this cognitive network. These protocols work better when using software-defined radios
for which we also propose a software infrastructure.

1.2.3 Hardware performance and power consumption

When a device knows all its applications’ QoS constraints, it can self-optimise according
to them. However, there are no easy hardware dials to modulate performance or power
consumption. The only hardware parameters that can be tweaked to affect performance
are the voltage and the clock frequency of one or several processors found in the device.

3

1. GENERAL INTRODUCTION

In a modern processor, the relation between clock frequency and performance cannot
always be foreseen statically. This is why modern processor have special blocks, called
performance counters to provide performance introspection that allows detecting when
a processor is under-utilised or when it is currently the processing bottleneck. Dynamic
Voltage/Frequency Scaling (DVFS) is the process that is commonly used to vary the level
of performance based on this load indication.

Calculating the power consumption based on performance is also not always possible.
Trying to limit the power consumption of a processor, no matter its impact on perfor-
mance, requires hardware and software co-design in order to achieve good efficiency in all
scenarios. This is made more difficult for researchers because most hardware companies
consider power management as an industrial secret.

In this thesis, the origin of power consumption is studied starting from the transistors
up to the whole device. We also propose how to modulate performance and/or power
consumption in order to meet the higher-level requirements set by the applications. The
result are demonstrated on an NVIDIA GPU which is considered to provide the most
power-efficient, power-aware and performance-aware hardware. This work highly relies
on clean-room reverse engineering and is used in the Linux open source driver for NVIDIA
cards, called Nouveau.

1.2.4 Making run-time power management decisions

Radios are usually most energy- and spectrum-efficient at their maximum bitrate.
However, the propagation channel or the recipient(s) may not allow the usage of this
setting. The most suitable settings should thus be selected on both the emitter and the
receiver in order to allow the communication to happen in the most efficient way.

Wireless devices like smartphones are often composed of multiple radios. These radios
are not entirely flexible, allow only one communication at a time on a selected number
of frequency bands and have a restricted choice for the physical layer parameters. This
means that depending on the user’s activity, some radios may be better-suited and more
power-efficient than others. The cost of switching from one radio to another can be
prohibitive and needs to take into account the mobility of the user, and his/her current
activity to avoid doing un-necessary switches that may have a performance or a power
cost for no benefit. The decision is almost entirely mission-dependent and cannot be
statically written once for all because it requires power and performance models of the
embedded radios and application’s QoS.

A decision engine, coupled to MPTCP, could deliver seamless hand-hovers between ra-
dios while providing the lowest possible power consumption and the performance needed
to fulfil the QoS.

Likewise, some systems are composed of multiple heterogeneous cores which have differ-
ent power consumption and performance characteristics. Selecting the most appropriate

4

1.2 Problems studied in this thesis

ones at run time can save a substantial amount of power while also increasing the user’s
satisfaction by providing the necessary performance.

This thesis proposes a decision engine that is compatible with real-time requirements in
order to be usable at run time. It also is generic-enough to allow smartphones developers
to model the performance and power models of their radios and CPU cores to provide a
decision that increases the battery life while also increasing the QoS.

1.2.5 Creating a green network for disaster relief services

Disaster scenarios usually involve the loss of a lot of infrastructures which can make it
difficult for rescue teams to coordinate efficiently by exchanging data to prioritise rescue
missions based on their urgency.

In the future, such coordination could be obtained through using tablets that would
allow rescuers to communicate by voice and video, annotate with the work that needs
to be done on a map of the area updated in real time. Finally, it could also show the
position of other rescuers to allow a rescuer to call for help.

The rescuer’s communication system could not rely on existing infrastructures because
they may have been damaged by the disaster. Instead, rescuers should be able to set-up
a network very easily that would re-use the white spaces to provide as much bandwidth
and the lowest latency possible across a wide area. To do so we propose a very flexi-
ble relay infrastructure that may be composed of both terrestrial and aerial relays that
uses software-defined radios and our signalling protocols to provide a constant connec-
tivity at the needed QoS. The selection of the white space that should be used for the
communication can also be done using our run-time decision engine.

Guaranteeing the availability of the tablets and the connectivity of the network requires
modulation power consumption and performance across the network. Using our hard-
ware contribution, we can detect an unsustainable power consumption in the hardware,
attribute it to an application or a communication and potentially shut it down. This
would allow every node in the network to guarantee its availability for a given amount of
time while gracefully lowering its performance when its power consumption is too high.

Wireless sensor networks could also be deployed very easily to monitor the air for
dangerous gases and make sure people keep out of dangerous areas. Our decentralised
data processing contributions would allow for an automatic response to an intrusion
(sounding an alarm). It would also increase the life of the network and allow it to run
for several months while providing excellent debugging capabilities.

Such a scenario demonstrates how the contributions of the thesis can work together to
provide complex cognitive behaviour at every layer and on most nodes of the network.

5

1. GENERAL INTRODUCTION

1.3 Outline of this thesis

In Chapter 2, we introduce the concept of green computing and green networking.
We then describe how radio-frequency-based communications operate and how multiple
users can share this radio frequency spectrum before talking about the existing type
of wireless deployment. We then introduce different ways of saving power by changing
the way computers communicate and by changing the way their hardware operates.
Finally, we introduce the concept of autonomic computing which aims at creating self-
managing components in order to reduce both the operational complexity and the power
consumption of the network as a whole.

In Chapter 3, we propose a way to dramatically increase the lifetime of a surveillance
network by implementing reasoning capabilities in wireless sensor nodes and letting them
collaboratively detect meaningful events before alerting the network administrator. This
proposition heavily relies on a data-centric network communication paradigm and on the
fact that events should be spatio-correlated. This proposition is however so successful
in lowering the number of communications that it becomes impossible for the network
operator to detect any problem in the network, nodes or their sensors. To improve the
introspection capabilities of the system, we propose multiple power-efficient techniques.

In Chapter 4, we study the problems associated with sharing the radio frequency (RF)
spectrum among multiple users and propose using software-defined radios to create a cog-
nitive radio network. The cognitive behaviour of this network allows nodes to understand
their RF environment and react to it to guarantee the needed QoS for the applications.
We then propose and evaluate two signalling protocols that enables node discovery, time
synchronisation and sleep scheduling while also allowing them to find the least crowded
frequency bands and sending/receiving multiple transmissions concurrently.

In Chapter 5, we study existing hardware through reverse engineering the power man-
agement capabilities of the most power-efficient hardware, NVIDIA GPUs. We then
study the impact of multiple factors such as voltage, frequency and temperature on power
consumption and then show ways to change these parameters to adapt to the current
application running in order to lower the power consumption without negatively affecting
performance. The way NVIDIA manages these parameters is then studied under various
circumstances. Finally, we show how NVIDIA GPUs are already autonomous-ready and
have been improving in this direction for multiple years.

In Chapter 6, we introduce the need for run-time power management by demonstrating
the power saving achievable by having a dynamic policy. We then propose a generic run-
time decision engine for power management which we evaluate in two scenarios: network
interface selection and performance level selection. We then compare the overhead of our
proposition compared to the most common language used in the literature.

In Chapter 7, we showcase how our different contributions can work together to create a
suitable network for a disaster relief scenario. We finally conclude the thesis in Chapter 8
and present our future work and perspectives.

6

Chapter 2

State of the art

Contents

2.1 Wireless communications . 8

2.1.1 Transmitting information wirelessly 8

2.1.2 Sharing the spectrum . 9

2.1.3 Applications for wireless communications 11

2.2 Green wireless networks . 12

2.2.1 The overhearing problem . 12

2.2.2 Efficient routing algorithms . 13

2.2.3 Efficient protocols . 16

2.3 Computer architectures . 16

2.4 Autonomic Computing . 18

2.5 Conclusion . 19

Energy is the source of every change in our universe, from particle physics to cosmo-
logical changes. Without energy, no work is possible.

At a human scale, the availability of energy has been directly linked to economical
growth [19]. This growth comes from an increase in added value which can be only be
obtained by work. Cheap energy means cheap work which can thus lead to an increased
added value for the same final price and also economic growth.

Although improvements in the efficiency of our machines and in our way of trans-
porting energy has made it seem like economic growth and energy consumption were
decoupling [20], energy usage keeps on rising.

As our society is increasingly reliant on Information and Communications Technology
(ICT), it’s energy usage increases by around 10% each year and was already consuming
10% of the electricity worldwide [21] in 2007, equating to 2% of the total energy usage.
In 2008 in France, a report [22] estimated that 55 to 60 TWh per year were consumed
by end applications which amounts to 13.5% of France’s electricity consumption. These
figures do not take into account the production, transport, and recycling costs [23].

7

2. STATE OF THE ART

Energy does not only have a monetary cost, it also has an environmental cost as
generating this energy released 0.82 Gtons of CO2 in the atmosphere in 2007 and is
expected to reach 1.43 GTons in 2020. This represents 2% of the total emission around
the world putting ICT’s emission at the same level as the airline industry [24]. CO2 is a
Green-House Gas and as such, should see its emission reduced by 15%–30% before 2020
in the European Union to keep the global temperature increase below 2°C [25].

The “green IT” initiative is an effort to reduce the footprint of ICT in the environmental
pollution. We can say that green IT is about efficient usage of resources at any stage
of the life-cycle of the ICT hardware, including its production, transport, usage and its
recycling. Multiple techniques can be applied to reduce the impact of ICT, some are
presented in [23] [25]. Green IT may also be called green computing or green networking.

In this chapter, we present an overview of the different techniques proposed to lower
the energy consumption in green wireless networks. This review is done at every layer
because an optimisation at one layer can be detrimental to other layers and result in
a negative result. We present this holistic approach in different sections for the ease
of readability. We first introduce in Section 2.1 how multiple nodes can communicate
wirelessly using the radio frequency spectrum without interfering with each others. We
then introduce in Section 2.2 different power- and spectrum-efficient ways for multiple
nodes to communicate together. In Section 2.3, we focus on the hardware used by the
wireless nodes to improve its power efficiency. Finally, in Section 2.4, we introduce the
vision of autonomic computing which aims at lowering the maintenance cost of a complex
system while also improving its performance and power-efficiency.

2.1 Wireless communications

Wireless communication technologies are usually based on electromagnetic radiations
with a frequency ranging from 3kHz to 300 GHz, also known as radio frequencies. They
are different from wired communication because the communication medium has a much-
higher attentuation and is shared among every wireless radios. Another difference is that
radios need to cope with echos in the signal (multipath effect).

2.1.1 Transmitting information wirelessly

Digital information can be sent over the radio frequency (RF) spectrum using different
modulation techniques. The signal to be transmitted could be encoded on the ampli-
tude of a sine wave, by shifting the sine wave’s frequency or by changing the phase of
the sine wave. It is also possible to combine Amplitude-Shift Keying (ASK) with the
Frequency-Shift Keying (FSK) or Phase-Shift Keying (PSK). For instance, the Quadra-
ture Amplitude Modulation (QAM) modulation combines the ASK with the PSK. It is a
very common modulation for high-speed digital communications. Many other modulation
schemes and variants of them are presented in [26].

In the same way oral communication uses phonems that assemble into words and sen-
tences, digital communications use symbols to carry the information. A symbol can

8

2.1 Wireless communications

encode one or more bits. For instance, the 2-PSK has two possible states which allow en-
coding one bit of information while a 64-QAM can encode 8 bits per symbol. The symbol
rate is linearly linked to how much spectrum is being used for the communication [27]. It
is thus more spectrum-efficient to encode as many bits per symbol as possible. However,
the number of bits per symbol is limited by the Signal-to-Noise Ratio (SNR) found at
the receiver [28].

2.1.2 Sharing the spectrum

The radio frequency spectrum can be shared by multiple radio transceivers by transmit-
ting at different frequencies (FDMA/OFDMA), at different time (TDMA), using different
codes (CDMA) or at a different locations (SDMA). These techniques are all presented
in [29] and can manage to share the spectrum among multiple nodes without harmful
interference.

SDMA reduces the chances of two nodes interfering by greatly limiting the interference
area. However, it still spreads all the energy over a wide area. The company Artemis
proposed a way to concentrate all the energy right at the antenna of the receiver and
track it continuously thanks to their pCell technology [30].

Other techniques require some sort of synchronisation. Indeed, TDMA requires an
accurate time synchronisation across all the nodes of the network to create short time
slots. Short time slots are necessary to get a small network latency. All the nodes should
also be given a slot which usually requires centralisation. Likewise, making sure that no
node outside the network is using the same channel or CDMA code requires some form
of centralisation or signalling.

A purely-local solution exists under the name Carrier Sense Multiple Access with Colli-
sion Detection (CSMA/CD). It has been introduced in IEEE 802.3 and consists in sensing
the communication medium to check that no communication is currently happening be-
fore transmitting. The problem with this technique is that a node may not detect a
transmission received by another node further away and start transmitting. The receiver
node would then be unable to properly receive any of the two inbound transmissions.
Both interfering transmissions are said to have collided.

CSMA/CD has been designed for wired networks where every network interface can
detect when a collision happened. In wireless networks, the attenuation of the commu-
nication medium is much higher and if a network is spread over a relatively large area,
it is unlikely that every network node will be able to hear the transmissions of every
other node of the network. To avoid this “hidden node problem”, Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) has been introduced in IEEE 802.11 to
reduce the number of collisions in wireless networks. This technique allows reserving the
network around receiving nodes by having them emit a Clear-To-Send (CTS) frame to
reserve the channel before receiving a transmission. This CTS frame is sent in response
to a Ready-To-Send (RTS) frame sent by the source node. An overview of the behaviour
is available in Figure 2.1. Both CSMA/CD and CMSA/CA are defined in [29].

9

2. STATE OF THE ART

Figure 2.1: Simplified overview of the Carrier Sense Multiple Access with Collision Avoid-
ance technique. Source [1].

The frequency at which a transceiver is allowed to radiate (transmit power) is currently
state-regulated and licenses are given or sold for some technologies, regions and/or a
company. By licensing frequency bands to different technologies and different companies,
the state grants a monopoly that allows companies to guarantee the availability of their
services operating on the licensed frequency band. So-called unlicensed bands where the
state allows individuals to radiate without authorisations come with limitations such as
the maximum emission power, the duty cycle (how often is the transceiver allowed to
communicate) and how much spectrum is it allowed to use (linear with the bitrate). This
allows individuals to compute a statistical probability of message loss if an estimate of
the amount of wireless devices in the direct vicinity of the transceiver can be obtained.

Such a fixed spectrum allocation results in a sub-optimal usage of the spectrum as
the licensed users, also called primary users, may not use the spectrum at all time and
everywhere. To fix this problem, the research community proposed to develop cognitive
radio (CR) networks that would allow a CR to re-use spectrum allocated to primary
users as long as it does not interfere with any of the primary users of the band [31].

10

2.1 Wireless communications

2.1.3 Applications for wireless communications

Wireless communications are very useful to lower the cost of deployment of a wired
communication channel. It can be very efficient to provide Internet access to isolated
homes in cities or to coastal islands. In both cases, relays communicating in a line-of-
sight fashion enable the use of directional antennas which increase the SNR and provide
a higher bandwidth while the lower interference on surrounding radios both increases the
reusability of the spectrum while also diminishing the average latency of the network by
lowering the likeliness of having collisions.

Wireless communications are also very useful for mobile users. Thanks to the GSM, 3G
and 4G infrastructure, users can phone each others from almost anywhere in populated
areas around the globe. Smartphones may also use this infrastructure to provide mobile
access to the Internet even when their users are moving.

These architectures are however extremely inefficient. Indeed, to produce 40 W of
radiated power, a 3G station consumes around 500 W. As the coverage of such station
is usually limited to a few kilometres, the global power consumption of the complete
infrastructure is non-trivial. Improving the efficiency of the 3G stations could thus yield
substantial savings when multiplied by the number of antenna found throughout the
world. Multiple techniques to do so have been proposed in [23].

Wireless Sensor Networks (WSNs) use wireless communications to route the data col-
lected by their sensors to the outside of the sensor network. Wireless links allow them to
be easily deployed which results in a lower cost compared to traditional wired networks.
WSN are already used in several fields such as monitoring air-quality [32], seismic ac-
tivity [33], forest fires [34], structural integrity of a building [35] and also area intrusion
detection [36].

Wireless sensor nodes are small nodes characterised by their very low processing power
and storage capacity (both ROM and RAM). They are also characterised by their very
limited energy resources. Despite these constraints, sensors are usually expected to be
secure and serve data with a relatively low latency and operate over multiple months or
years without swapping their batteries.

Wireless meters are also an increasingly popular use of wireless sensor networks. They
are meant to speed up the collection of the meters’ reading by allowing a read-out of all
the meters of an area to be collected by simply getting close to one of them [37]. This is
thanks to the fact that these so-called smart meters create a mesh network that allows
routing the readings of every meter of the network to the person in charge of retrieving
them. A sensor fitted with a GSM connection can even be used to periodically collect the
readings and forward it to a server of the company for billing. This continuous reading
however poses privacy problems [38].

11

2. STATE OF THE ART

2.2 Green wireless networks

In the previous section, we introduced how wireless nodes can communicate with each
others and which kind of applications make use of these capabilities. In this section, we
study techniques commonly used in green wireless networks to lower the power consump-
tion.

2.2.1 The overhearing problem

To be available, a radio has to be in receive (RX) mode. In wireless sensor networks,
a radio being in the RX mode consumes roughly the same power as when it is in the
emission (TX) mode [39]. However, very few messages are actually exchanged in such
networks which yields a very poor average energy usage per exchanged message. To
reduce the average power consumption of the nodes, radios should spend most of their
time in sleep mode where they barely consumes any power.

Ideally, the radio should only transit from the sleep to RX state when a message is
about to be sent. Any time spent with the radio in the RX mode while not receiving
any information, called overhearing time, is a complete waste of energy. The problem is
that a radio cannot receive a message or signal when it is in sleep mode so it has to have
another way to know when a message is about to be sent.

Preambles

One solution to fix this overhearing problem for mostly-idle networks is to put the
burden of synchronisation on the emitter by introducing very long preambles before the
actual message. For instance, radio A is willing to send a message to radio B. Radio A
sends a 100 ms-long preamble before sending its message. Radio B spends most of its
time in sleep mode but wakes up every 90 ms for a few milliseconds to check if a preamble
is currently happening. If there is none, then it can go back to sleep mode for another
90 ms. If there is a preamble, the radio waits until its end before receiving the message.
This allows receiving radios to spend most of their time in sleep mode unless necessary.

This preamble solution has been successfully used by the wave2m [37] technology to
drastically lower the power consumption of the wireless sensor nodes. In [40], the authors
proposed an improved solution that broadcasts multiple times a very short message con-
taining the destination radio. This allows other radios to go back to sleep earlier as they
do not have to receive the message header to know if they are the intended recipient. The
authors also proposed that the receiving node should acknowledge the preamble before
the emitter sends the complete message. This allows to lower the spectrum usage if the
receiver is unavailable. The authors managed to perform the check for the preamble on
the receiver side in 0.38 ms. This figure is so low that it enables multi-channel capabilities
which could be used to improve the throughput in the network while also reducing the
chances of collisions.

The length of the preamble needs to be adjusted depending on the average frequency
at which messages are sent in the network. For instance a preamble of 100 ms is fine if a

12

2.2 Green wireless networks

message is sent every minute in average. It is however much too long if a message is sent
every second as radios would start spending a non-trivial amount of time in RX mode
(up to 10%). Likewise, 100 ms would be too short if a message is sent in average every
hour as radios would have to wake up constantly and would have a very low probability
of receiving a message. The preamble length should thus be set according to the expected
average frequency at which messages are sent in the network and the maximum latency
acceptable by the application running on the network.

Time synchronisation

Another solution to the overhearing problem is for nodes to agree to only send infor-
mation periodically, at the start of every second for instance. Radios would only need
to be put in the RX mode at the beginning of every second and keep it long-enough to
check that no radio in its surrounding started emitting a message.

The problem of such solution is that the clock of each radio has a slightly different
rate because the crystal used is usually not very accurately cut. This means that even if
the radios were synchronised at one point, their clocks would drift apart and the network
wouldn’t be connected anymore. Even if the crystals were exactly the same on all the
radios, the temperature difference between the radios caused by different light and wind
exposition would result in a frequency difference.

This clock drift can be identified and corrected in software by exchanging messages
with other nodes. In [41], the authors propose a synchronisation mechanism that works
for single hop networks. For large networks, other algorithms can be used to keep the
clocks in sync [42][43].

If the sensor nodes hosting the radios are equipped with a GPS, it is also possible to
use the time broadcasted by the GPS satellites as a time reference to fix the clock drift of
the radios. The time accuracy of such clocks is 50 ns which is more than enough for our
needs. GPS receivers are however power-hungry and should not be enabled at all time.

Once nodes are synchronised, it is possible to implement TDMA in the network. Pro-
vided a good assignation of time slots, the advantages of TDMA are that no collisions
can happen and radios can sleep when it is not their turn to communicate. A distributed
TDMA slot assignment algorithm for WSNs has been proposed in [44].

2.2.2 Efficient routing algorithms

There are different topologies of network, as can be seen in Figure 2.2. The Mesh topol-
ogy is usually found in wireless ad hoc networks as mesh nodes are connected together
without a central hierarchy. The other topologies are usually found in infrastructure
networks where a hierarchy is needed.

A network is said to be ad hoc when it does not rely on any infrastructure to operate
and has been created with little to no planning. Such network requires its nodes to

13

2. STATE OF THE ART

Figure 2.2: Example of network topologies. Source [2].

forward data for other nodes. The route taken by data depends on the source, the
destination and the routing algorithm used.

Multiple routing algorithms have been proposed in the literature. Some of them find
routes on-demand (reactive) while some are pro-active and maintain up-to-date routing
tables. The main advantage of the first is that it is able to cope with a highly-dynamic
network but this comes at the price of a high latency for the first communication. On the
contrary, pro-active routing provide a low routing latency but require a lot of background
traffic to keep the routing tables up to date in a mobile situation.

Pro-active routing algorithms such as OLSR (Optimized Link State Routing Proto-
col) [45] or B.A.T.M.A.N. (Better Approach To Mobile Ad-hoc Networking) [46] are best
suited for low-latency applications exchanging a lot of data in order to make the necessary
background traffic insignificant.

Reactive routing algorithms such as AODV (Ad hoc On-Demand Distance Vector
Routing) [47] are best-suited for extremely mobile applications not minding a potential
high-latency delivery time due to the on-demand nature of the algorithm. Such algo-
rithms are much more efficient than pro-active ones when the application running on the
network does not exchange a lot of data as no background traffic is necessary.

Some routing algorithms can fall in the following categories:

• Data-centric: Data is interpreted and/or fused by the routing process;

• Hierarchical: Data follows a strict hierarchy of nodes to reach its destination;

• Geographic: Data is routed based on GPS coordinates.

Data-centric routing protocols such as COUGAR [48] or ACQUIRE [49] allow users
to specify the type of information they would like to receive. They both are centralised
approaches where one node is responsible for aggregating and processing data. This node
also asks the right sensors to stream their data to their “leader node”. When an event
of importance happened, the leader node sends the event to the gateway.

14

2.2 Green wireless networks

Another data-centric routing algorithm has been proposed under the name “Efficient
Overlay for Publist/Subscribe in Wireless Sensor Networks” [50]. This algorithm is also
centralised and allows to attach a semantic to data. It also lets any node in the network
subscribe to some events with some conditions attached, contrarily to the two other
data-centric protocols we previously introduced.

Hierarchical routing protocols such as LEACH (Low-Energy Adaptive Clustering Hi-
erarchy) [51] or RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks) [52]
are meant to save power and minimise the length of the routing tables. This is often
needed in Wireless Sensor Networks because of the very-limited RAM available.

The LEACH routing protocol uses a clustering approach. The election process for the
clusters is done purely locally based on the remaining power and probabilities. When
a node decides to become a clusterhead it sends a message telling so and waits for
surrounding nodes to attach to it. Nodes attached to this clusterhead can then send
their messages periodically before going back to sleep. Clusterheads however need to
keep their radio in RX mode at all time to be able to receive the messages of the nodes
of the cluster. To limit the number of messages sent to the gateway, the data of all
the sensors can be aggregated in the clusterhead. All the clusterheads are re-elected
periodically which indicates that a time synchronisation is necessary. This approach
works well for densely populated networks with nodes positioned randomly but may
result in a loss of connectivity if a clusterhead has no route available towards the sink.

The RPL routing protocol is reactive and organises the network in a tree. The depth
of a node in the tree is based on a so-called “rank”. The rank is an attribute of each
node in the tree and is a number strictly increasing when going down the tree toward the
leaves. When a node is willing to add itself to the network, it sends a DIS message to
probe the surrounding nodes which then answer in a DIO message that primarily contain
their rank. The node will then need to attach to a preferred parent and should choose
the one with the lowest rank as it is the closest to the root of the tree. When a node
wants to send a message, it sends the message to one of its parent which will check if it
knows a route to the destination or not. If it does, it sends the message to the right son.
If it does not, then it sends the message to its parents which applies the same algorithm.
If even the root of the tree does not know the route to this node, a DAO message will
be broadcasted to look for the right node. Upon receiving a DAO message of which it is
the destination, a node should send a DAO-ACK message to the root of the tree. All the
parents along the way can store the route to this node if they have the RAM space to do
so. When the DAO-ACK reaches the root of the tree, the message can be forwarded to
the right son which will in turn forward it to the right son until it reaches the destination
node. Nodes with a limited battery can refuse to become a parent by not answering DIS
requests or by advertising a very large rank number to provide connectivity to only the
nodes that have no alternative but using this node as a parent. It is also possible for a
node to increase its rank to become less desirable to the sons. Nodes may also randomly
select the parent among all its parents with the same ranks to route upward messages.
Nodes can also periodically select another preferred parent. All these techniques allow

15

2. STATE OF THE ART

spreading the load on more nodes in order to increase the lifespan of the network.

Geographic routing algorithms such as GRP (Geographic Routing Protocol) [53] use
GPS information to optimise the routing path. In the case of GRP, it is a reactive
protocol that uses the GPS information to reduce the un-necessary control traffic.

CA-Path [54] is a routing algorithm that takes advantage of the broadcasting nature of
wireless transmission to minimise the number of re-transmissions if a relay did not manage
to receive the message but a neighbour did. This provides an interesting cognitive ability
to routing that decrease the average power consumption and spectrum usage.

An evaluation of the GRP, AODV and OLSR routing algorithms for mobile ad hoc
networks with a video conferencing application has been carried out in [55]. Depending
on the conditions, the GRP, AODV or OLSR algorithms become best-suited. It is thus
very important for an application to choose the routing algorithm that is best suited to
the type of traffic and QoS needed.

2.2.3 Efficient protocols

Another way of saving power in green wireless networks is to reduce the size of the
messages exchanged among the nodes.

The most effective way of reducing the message size is to reduce the size of the headers
found in all messages. The IPv6 header is 40 bytes long while the UDP header is 8 bytes
long. By using 6LoWPAN [56] instead of the standard IPv6, it is possible to compress
the network header to 7 bytes and 4 bytes for the UDP header. This results in a 37 bytes
saving as the new size of the headers is 23% of the original size. It however comes at a
cost as only 16 UDP ports are available per node and a gateway needs to be installed to
allow 6LoWPAN and IPv6 computers to communicate.

HTTP is a protocol that is widely used in the world-wide web to access resources.
For instance, it has been used by SOAP to create an RPC protocol using XML. HTTP
could be very useful in wireless sensor networks to query the state of a sensor or actuator.
However, due to its high parsing complexity and big data size, using HTTP is not possible.
CoAP [57] has been proposed by the Internet Engineering Task Force (IETF) to provide
a RESTful protocol that can be mapped to HTTP by using a gateway and yet has a
low parsing complexity and header size. Like HTTP, it also supports caching. However,
unlike HTTP, a service can subscribe to a resource to get notifications every time the
resource changed which avoids continuously polling on a resource to check for updates.

2.3 Computer architectures

Optimising every layer of the OSI model with the solutions proposed in the previous
section is not enough to achieve the lowest energy usage possible in a network. In the
end, the energy usage is always consumed by the hardware that runs the applications,

16

2.3 Computer architectures

may it be for data transmission or processing. We thus introduce ways of making the
hardware more efficient, may it be radios or processors.

A radio’s efficiency is limited by the heavy attenuation of the communication channel.
Overcoming this attenuation requires a lot of radiated power which has to come from
the energy source. Improvements in power amplifiers however allow saving a lot of
power while still meeting the output linearity requirements. Up to very recently, power
amplifiers had to be powered at a voltage slightly higher than the maximum voltage it was
supposed to output. All the voltage difference between the output and the input power
would be dissipated as heat. Envelope-tracking technologies such as [58] allow supplying
the power amplifier with just the right voltage at any time for it to run constantly at its
peek efficiency. With such technology, Qualcomm managed to save 20% of power and
reduce the thermal generation by 30% [59] on a 3G/4G LTE mobile interface compared
to a previous version of the radio. Another proposed solution is to have multiple fixed
voltages, select the most appropriate voltage and compensate for the non-linearity in
software. This technique allowed to increase the total efficiency of a HSUPA transmitter
from 17.7% to 40.7% and from 11.3% to 35.5% for WLAN 802.11g [60]. Using an improved
version of this technology, Eta Devices managed to create an LTE transmitter with a 70%
efficiency, compared to the 44 to 55% currently available [59].

Application developers used to mostly ignore the processor they were running on as its
performance and power efficiency would increase exponentially due to improvements in
the transistor etching process. Developers just had to wait for the required characteristics
needed were met before shipping a project.

In 1975, Moore successfully predicted that the number of transistors found in micropro-
cessors would double every two years [61]. In 2011, Koomey was able to observe that the
efficiency of processor doubled every 18 months for the past 60 years. This observation
is now called Koomey’s law [62].

However, as transistors get smaller and smaller, their ability to function as a per-
fect switch diminish because of tunnelling quantum physics effect. Indeed, in quantum
physics, the position of the electron is described as a probability density function. When
the insulating part of the gate becomes too thin, some high-energy electrons can move
to the other side of the gate. This leaky-faucet effect is responsible for what is known as
the static power consumption. This effect could be mostly ignored until the year 2000
but is now becoming a prevalent part of the total power consumption [6].

The etching process of transistors is constantly improving to reduce the static power
consumption but it takes several years of effort to propose a new generation. In parallel
of this effort, hardware designers introduced different techniques to save power on their
processors. A relatively simple technique consists in dynamically adjusting the clock
frequency along with the supply voltage of processors. This technique is called Dynamic
Voltage/Frequency Scaling (DVFS) [63] and does not require a complete redesign of the
internal architecture of a processor. To further improve the power efficiency, two other

17

2. STATE OF THE ART

techniques are usually found in modern processors: clock gating and power gating. The
first is about not supplying a clock to a block of transistor that does not need it [64]
while the latter is about cutting the static power consumption by cutting the power of
un-used blocks. In both cases, it is necessary to modify the hardware design to get the
needed activity signal for those techniques to work.

The 3 techniques presented (DVFS, clock-gating and power-gating) require some in-
tervention by the operating system to be useful. It is thus not possible anymore to wait
for better hardware in order to solve the power consumption problem of a processor, the
software also needs to get involved.

2.4 Autonomic Computing

As we saw in the previous sections, both the hardware and the networks are becoming
more and more complex and, as such, they require more and more knowledge from the
technicians trying to maintain them. Also, as the number of computer systems grows,
less and less human resources can be used to administrate them. This likely results in a
sub-optimal configuration which conflicts with the goals of green networking.

The vision of autonomic computing is the creation of systems which are able to manage
themselves without the need for a constant human input [23]. In this vision, such systems
would only receive high-level goals from humans and they would continuously configure
themselves in order to meet these goals. This vision is inspired by biology where some
actions are performed by our subconscious without needing any conscious thinking. This
effectively hides the complexity of the system by only taking high-level inputs which,
in turn, simplifies the administration of such a system. Automatic management also
enables optimisation opportunities which can result in a higher performance and lower
power usage.

This vision was first proposed by IBM in 2001 in the Autonomic Computing Initiative
(ACI) [65]. To be considered autonomic, a system must implement the following self-
management functions:

• Self-configuration: Create a functional configuration that may be sub-optimal
but already fulfil the user’s need;

• Self-optimisation: Improve the performance of the metrics of interest while low-
ering the power consumption when possible;

• Self-protection: Protect itself from adversaries while also protecting other users’
information (confidentiality and integrity);

• Self-healing: Detect dangerous states for the system (overheating for example)
and react to it to come back to a safer state.

Designing and deploying autonomic and collaborative systems would thus not only
lower maintenance costs but also improve the quality of service, performance and increase
both the power- and the spectrum-efficiency throughout a network.

18

2.5 Conclusion

2.5 Conclusion

In this state of the art, we introduced the concept of green networking in wireless
networks. After explaining how RF communications are possible, we introduced optimi-
sations at every layer of the OSI model to reduce the footprint of communications on
both the power and the RF spectrum usage. We then introduced power saving techniques
for the hardware used by the network nodes.

Because the complexity of modern hardware and green network architectures, it is
unlikely that an operator could continuously optimise the network to adapt to changes in
the activity. To ease the administration of the network and always use the most efficient
power-efficient configuration, the nodes and the network should self-manage as proposed
in the autonomic computing vision.

This chapter proposed an overview of techniques used in green networking to lower the
resource usage of wireless networks. A more detailed state of the art will be introduced
in the related chapters, starting with the highest layers of the OSI model, the application
to the network layer.

19

2. STATE OF THE ART

20

Chapter 3

Application & Network:
Decentralising data processing in
surveillance networks

Contents

3.1 Introduction . 21

3.2 State of the art . 22

3.2.1 Direct communication . 22

3.2.2 Cluster-based Data Aggregation 23

3.2.3 Local Event Detection . 24

3.2.4 Collaborative Detection . 25

3.3 Contributions . 26

3.3.1 Modality-agnostic Collaborative Detection of Spatio temporally
Correlated Events . 27

3.3.2 Offline Logging Capabilities . 32

3.3.3 Sensors Reputation Management 33

3.3.4 Summary . 34

3.4 Evaluation . 35

3.4.1 Modality-agnostic Collaborative Detection of Spatio temporally
Correlated Events . 36

3.4.2 Sensors Reputation Management 39

3.5 Real-life deployment . 41

3.6 Conclusion . 41

3.1 Introduction

Surveillance networks require multiple wireless sensors spread over a large area. It
would be impractical for nodes to have the necessary power to be able to reach the
computer that centralises the sensor’s data directly. Surveillance networks thus usually
use a multi-hop ad-hoc network topology.

21

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

Data transmission in a multi-hop wireless ad-hoc network plays a large role in nodes’
power consumption [39] and it will comparatively grow larger and larger as computing
costs go down thanks to the constant improvement in the processors’ efficiency (Koom-
sley’s law [62]). This is especially the case in Wireless Sensor Networks (WSNs) where
computing power is hardly necessary because sensor nodes are usually only expected to
keep the network connected, acquire data from their connected sensors, generate network
frames containing the sensors’ data and send them to a gateway.

The energy cost of transmitting 1 KB over a distance of 100 m is approximately
the same as the cost of executing 3 million instructions by a 100 million instructions
per second (MIPS)/W processor [66]. However, a transmission does not only drain the
emitter’s battery, it also increases the power consumption of surrounding nodes as they
have to demodulate the incoming signal and process the decoded frame. It also increases
the contention over the network which prevents radios from being asleep when they do not
need to communicate because they need to check if the medium is free or not. Improving
the lifespan of WSNs thus means diminishing both the number and the average size of
the messages sent in the network, even if it means using more processing power to do
so. This trade-of depends on the distance at which the message should be sent and how
efficient the processor is.

As we will see, localizing data processing among the nodes of a network is the best
way of reducing the number of communications and their size even if it creates other
challenges.

In Section 3.2, we proposed the state of the art concerning data-processing schemes and
network architectures in Wireless Sensor Networks along with their shortcomings. In Sec-
tion 3.3, We introduce a modality-agnostic collaborative detection of spatio-temporally
correlated events in a WSN which I evaluate in Section 3.4. Section 3.5 details how the
proposed algorithms were implemented and deployed in a realistic scenario. We conclude
on decentralizing data processing in Section 3.6.

3.2 State of the art

We identified 4 kinds of Wireless Sensor Network architectures with varying degrees of
autonomic behaviour when it comes to data processing. We also try to categorise them
by average communication length and how often messages are sent.

3.2.1 Direct communication

Wireless Sensor Networks started as simple ad-hoc networks with the information flow
going from all the sensors to the gateway. Each sensor node collects data from the sensors,
average/aggregate it and then send this data to the gateway. The gateway then either
processes the information itself, stores it or sends it through the Internet to another
server. This gateway node is often referred to as “the sink” as all the traffic ultimately
is routed through it. This behaviour can be seen in Figure 3.1.

22

3.2 State of the art

Sensing area

Sensor Node

Sink

Network connectivity

Direct communication:

Packet routing tree
1

2 3

6

1

2

1

1

1

Periodical

communication

of periodical

packets routed
3

Figure 3.1: Example of a direct communication architecture deployment

In this kind of WSN, sensors’ readings can be stored before being sent in batch to limit
the number of packets at the expense of latency.

Examples of applications implementing this architecture include environment monitor-
ing [67] and smart metering as the information they collect is meant to be stored by a
centralised entity for processing.

The average communication length on this architecture is the average route length that
links every sensor node to the gateway. As all sensor nodes send data periodically, this
kind of network’s lifespan depends on how often the sensors’ data is sent to the gateway.

In this network type, data flows from the sensor nodes to the sink in a tree-like fashion.
Network packets should be sent to the neighbour closest to the sink in order to reach it
in as few hops as possible. A routing algorithm such as RPL [52] does exactly that as
nodes advertise their rank (number of hops to reach the sink). A node should thus send
data to the node with the lowest rank.

3.2.2 Cluster-based Data Aggregation

Cluster aggregation:

Packet routing tree

1
1 1

2

1

1

1 1

Sensing area

Sensor Node

Sink

Periodical

communication

of periodical

packets routed
3

Figure 3.2: Example of a cluster-based aggregation deployment

A way to lower the average length of communication is to let a data-aggregation cluster
node gather data from its surrounding nodes, aggregate it into a single message and send
it to the gateway. This architecture can be seen in Figure 3.2.

23

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

This architecture introduces two kinds of communications:

• Short-distance: A direct communication (one hop);

• Long-distance: A multi-hop communication to the sink.

Long-distance communications should be avoided as much as possible to lower power
consumption in the network. Indeed, they not only consume energy on both the emit-
ter and gateway, but they also consume the energy of every routing node in-between.
Moreover, nodes around the route are also consuming more energy because they need to
receive and parse at least the MAC header in order to determine if they are the recipient
or not. Finally, since the gateway is always the ultimate destination for every packet,
the closer to the gateway a node is, the less likely the communication medium is to be
available because of the ever-increasing traffic found when getting closer to the gateway.
This further increases power consumption.

On the other hand, short-distance communications consume energy on a much more
limited zone and more uniformly.

With the cluster-based data aggregation architecture, most communications are local
which spreads the power usage more evenly in the network.

The LEACH [51] routing algorithm matches almost-exactly the needs for this type of
network. It should thus be used.

3.2.3 Local Event Detection

Local Data correlation:

Packet routing tree

Sensing area

Sensor Node

Sink

Aperiodical

communication

Figure 3.3: Example of a local event detection deployment

Instead of addressing the average communication length problem, local event detection
addresses the problem of the number of messages generated.

Both the sink and the cluster-based data aggregation architectures rely on the outside
of the network to process data. These architectures are data-oriented as they only acquire
and forward sensors’ data to the gateway.

If the WSN is used for real-time detection of events, then it is possible to reduce the
number of messages by decentralising data processing and only sending sensors’ data
conditionally [68]. This aperiodical traffic can be seen in Figure 3.3.

24

3.2 State of the art

For instance, in an intrusion detection application, it is not necessary to constantly
send the raw values read by the sensors. Instead, local processing of sensors’ data avoids
unnecessary transmissions by letting the sensor node find out whether the sensor detects
something important or not.

Local event detection may be challenging for sensor nodes because of their very tight
CPU, ROM and RAM constraints, but it is possible to use digital signal processing units
(DSP) [69] as these processors are getting more and more efficient [62].

Awareness of the WSN’s application allows sensor nodes to limit the number of mes-
sages they emit by filtering the unneeded information [70][71].

As the data consumer is out of the network, packets still need to be routed to the sink.
A tree-like RPL routing protocol is still the most efficient way to do so because it routes
towards the sink in the fewest number of hops possible.

3.2.4 Collaborative Detection

Collaborative detection:

Packet routing tree

Sensing area

Sensor Node

Sink

Aperiodical

communication

Figure 3.4: Example of a collaborative detection deployment

If sensors are spatially- and temporally-correlated, collaborative detection can build
on the concepts of both local data aggregation and cluster-based data aggregation.

Sensors are first locally correlated to filter unneeded information. Useful data points,
are then collected in a cluster in order to correlate them with all the sensors of a given
area [72][73]. This behaviour can be seen in Figure 3.4.

This method further limits the message count by avoiding false positives induced by
defective or ill-calibrated sensors. Less false positives also means reduced long-distance
communications.

This method also works on heterogeneous sensor networks [74][75] and is also known
to produce better results than value-fusion as found in cluster-based data aggregation
when fault-tolerance is needed [76][77].

This architecture provides both a lower average communication distance and fewer
messages in the network because of its aggressive filtering at both the node level and the
cluster level.

25

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

However, to our knowledge, already-existing collaborative detection networks do not
abstract the sensor modality. This severely limits the capability of adding new sensors
at run time since the correlating node needs to be aware of all the sensor types and know
how to correlate them.

Moreover, collaborative detection makes it more difficult for the network operator to
know if the network is operating correctly because of the low volume of messages. In
case of a detection failure, it also makes it harder for her/him to debug what went wrong
because no logs are available on her/his work computer.

Finally, because of the correlation found in collaborative detection, it is difficult for the
network operator to detect faulty sensors. It should thus be the cluster’s task to monitor
the false positive and false negative rate of each sensor and recalibrate its parameters to
deal with those. Likewise, if a sensor node becomes unavailable, the cluster node should
reconfigure itself to operate without the sensors connected to this faulty node.

In a collaborative detection network, data is processed in the network and events are
sent when some conditions arise. Those events have a semantic attached to them and
can be produced or consumed by any node in the network. Events should thus be routed
from the producer nodes to the consumer nodes.

The RPL routing protocol is not suitable for this kind of network as it is meant for
routing information to the nearest sink and it is not data-centric. Instead, we want that
when an event is published, it should be dispatched to all the nodes that subscribed to it
using as little packets as possible. A centralised version of this Publish/Subscribe routing
algorithm has been proposed in [50] but we hope that a decentralised version of it will
be proposed soon.

An evaluation of the performance of each WSN type is available in Table 3.1 which
will be explained in Section 3.4.

WSN type readings short-distance long-distance

Sink 5400 0 (0%) 5400 (100%)
Cluster aggregation 5400 3600 (67%) 1800 (33%)
Local detection 5400 0 (0%) 540 (10%)
Collaborative detection 5400 ≤ 540 (10%) < 180 (3.33%)

Table 3.1: Comparing WSN data management on a 3-nodes area with a sensor false positive
probability (p=0.1, f=1Hz)

3.3 Contributions

Logical reasoning allow a system to make inferences using only logical deductions [78].
An automated logical reasoning can use prior knowledge and/or experience to improve

26

3.3 Contributions

its reasoning abilities [79].

To address the shortcomings of the state-of-the-art collaborative detection, we propose
three different reasoning components:

• modality-agnostic collaborative detection of spatio-temporally correlated events;

• offline logging capabilities;

• sensors reputation management.

3.3.1 Modality-agnostic Collaborative Detection of Spatio temporally
Correlated Events

Design goals

This proposal is based on the following assumptions:

1. an area defines a spatial zone where all sensors are correlated and can communicate
with each other;

2. area’s sensors should all detect an intrusion within a definite maximum time called
minimum intrusion time;

3. sensors are noisy and randomly emit false positives;;

4. sensors’ may not be reachable at all time;;

5. sensors are ill-calibrated..

Assumptions 1 and 2 have to be enforced when sensors are deployed. It also means
network’s lifespan can be improved by using collaborative detection to lower both the
number of messages and the average distance of communications.

Assumptions 3 and 4 mean that the network should be fault-tolerant and thus, be
using decision-fusion [76]. The correlation node should also look for new sensor nodes in
the spatial zone while also monitoring for failing nodes. Upon changes in the available
sensor nodes, the correlation node should reconfigure itself to limit the number of false
positives or false negatives.

Assumption 5 raises the problem of sensors correlation. Since non-calibrated sensors’
values cannot be averaged, it means that the values read by the sensor can only be
interpreted by the sensor node that produced it. Indeed, the value can only be interpreted
when put into its context, that is to say, the previous values/trends. Moreover, decision-
fusion mandates the sensor to produce a decision whether it detects an event or not.

27

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

Thus, instead of reporting a given value, a sensor needs to locally correlate its values
then decides if an event is going on or not. If an event is detected, a confidence rating
ranging from 1 to 3 is attributed to the detection. This proposal abstracts the sensor
type and has many additional benefits such as:

• hiding away calibration errors from the correlation node;

• correlating sensors of arbitrary type.

Messages between the sensors and the reasoning node are sent using a Publish/Sub-
scriber communication paradigm. This is done to ease the creation of topic of interests
sensors can subscribe to. Moreover, a publisher does not have to know what its sub-
scribers are interested in. This allows the creation of a highly-dynamic collaborative
behaviour.

Sensor nodes

In this proposal, individual sensors are required to detect events by themselves and
give a confidence rating ranging from 1 to 3. The algorithm that should be followed
highly depends on the sensor modality and the event that should be captured. As an
example, let’s imagine someone wants to use a binary infrared optical barrier to detect a
car driving down a street. The signal produced by the sensor would be a simple square
signal whose length will depend on the length and the speed of the car.

To detect such a square signal, the sensor node can poll the sensor’s value periodically.
The polling period depends on how wide the optical barrier is and how fast the car is.
The maximum speed of the event to detect is one parameter of the area. As soon as
the polled sensor detects something, a correlation timer is set. If the value sensor keeps
on detecting something for, for instance, more than a tenth of the minimum detection
time, then a message (hereinafter referred to as “alert”) should be sent to the correlation
node with the minimal confidence level. The confidence level should then be increased
gradually to 3 as long as the sensor keeps on detecting the intruder.

A minimum delay between alerts should be implemented in order to further reduce the
number of messages. Doing so while keeping the correlation node up to date concerning
the state of each sensor may require to break the re-emission rule if the confidence level
increased. For instance, in Figure 3.5, we see the evolution of the value returned by an
analog sensor. An alert is first sent when the value increased over a threshold and then
re-emitted after a period. If the value changes in a fast way, an alert can be sent earlier.

The correlation node

When the correlation node receives an event from a sensor (alert), we propose that it
stores both the current timestamp and the confidence level into memory for future ref-
erence. Then, it should compute the area’s criticality level by summing the contribution
of all the area’s sensors. Being able to automatically trigger responses to an event allows
the creation of a fully-autonomic collaborative WSN.

28

3.3 Contributions

t0 t0+Δlpt0 t0+Δlp+Y

Publish an alert

because:

f(t) > threshold

threshold

sensor

value

f(t)

Δsp

Publish an alert

becauce:

f(t) > threshold

AND t > t0+Δlp

Publish an alert

because:

f(t) > f(t-Δsp)+Δv

f

OR OR

Δlp: Long retention period (example: 1 minute)

Δsp: Short retention period (example: 10s)

Δv: A significant value change (example: 20%)

Δlp > Y > Δsp

Figure 3.5: An example of alert re-emission policy depending on the evolution of an analog
sensor’s value

Being able to automatically trigger responses to an event allows the creation of a
fully-autonomic collaborative WSN.

A sensor’s contribution to the criticality level is the confidence level of the alert times
the age factor. The age factor linearly decreases from 1 to 0 in correlation time seconds.
The correlation time should be roughly the same as the maximum time it takes for an
event to happen. In an intrusion detection scenario, it is the maximum time it takes
for a pedestrian to cross the area. If a sensor becomes unavailable, its criticality level
should be raised to the maximum for a few minutes to prevent attacks on the system
that involve disabling sensors remotely by shooting them.

The age factor is important because alerts should expire after some time. Moreover,
older alerts should not influence the correlation as much as fresh alerts do. The choice of
a linearly decreasing function is motivated by the simplicity of implementation. It may
however need to be adjusted depending on the kind of application used in this system.
Computing the area’s criticality level is done following (3.1).

age factor(a) =

0 alert age(a) > correlation time

1−
alert age(a)

correlation time
otherwise

alert age(a) = current time()− alert timestamp(a)

contrib alert(a) = confidence(a) ∗ age factor(a)

criticality =

alert count
∑

a=0

contrib alert(a) (3.1)

29

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

When most sensors from an area simultaneously detect an event, the criticality level of
the area should be higher than a threshold that depends on the number of sensors in the
area, the minimal correlation factor we want to achieve and a latency mode indicating
how early an alarm should be sent to notify the zone operator or to trigger an automatic
response. The area’s threshold is computed using (3.2) when a new sensor node is added
to the area or after a sensor node has been unreachable for some time, 10 minutes for
instance.

criticality threshold = sensors count ∗ 1.5 ∗ latency mode (3.2)

latency mode =

0.25 Red mode

0.50 Orange mode

0.75 Y ellow mode

1.00 Green mode

1.50 White mode

When the criticality level goes over the threshold, the correlating node of the area
publishes a message telling that an event has been detected by the area. This message,
hereinafter referred to as alarm, can then be used by other nodes to trigger automatic
actions such as lighting up a spotlight or an alarm.

The 1.5 constant from Equ. 3.2 is the maximum confidence level (3) divided by 2. This
means that when using the green latency mode, all the sensors should report an average
of 1.5 before an alarm is sent.

An example of the evolution of an area’s criticality level can be seen in Figure 3.6.
At t0, a node sent an alert which raised the criticality level. This criticality level then
linearly decreased towards 0. At t4, the contributions of alerts received at t1, t2, t3 and
t4 raised the criticality level enough to reach the criticality threshold, which led to the
emission of an alarm. At t5, the correlation node received another alert which contributed
more than the alert at t0 because the alert had a higher confidence level.

t0 t0

threshold

criticality

level f(t)

t1 t2 t3t4 t5

Figure 3.6: Example of the evolution of an area’s criticality level

30

3.3 Contributions

We also propose that the first node to be added to an area should be “elected” as the
correlating node. However, this node may not be available during the whole lifespan of
the network for the following reasons:

• energy source depletion;

• hardware malfunction;

• selective jamming on this node.

To overcome these challenges, the correlation node role should be duplicated in two.
Both correlation nodes would subscribe to the alerts sent in their area. The only difference
between the two nodes would be that the master node (the first one elected) would emit
an alarm as fast as possible. On the contrary, the slave correlation node (the second node
to be added to the area) would wait for a few seconds before emitting an alarm unless
the master node emits the alarm before the expiration of the delay.

This proposal increases reliability by avoiding the single point of failure that was the
correlation node. However, a re-election should be made whenever the master correlation
node’s battery is running low or when the slave correlation node detects that the master
is not behaving correctly. In this case, the slave should elect himself as the master and
query a list of potential candidates in order to select a suitable slave node to succeed
him. If the slave node becomes unavailable, the master node should re-elect another slave
node.

Many clustering algorithms exist for wireless sensor networks [80]. We however propose
that the election mechanism for the correlation node should be made according to these
criteria:

• energy available (in Joules, not percentage);

• number of hops to the gateway;

• number of routes to the gateway.

Redundancy could then be further improved by electing n correlation nodes with an
increasing delay between detection and the emission of an alarm. This works because
every node of the area can communicate with each others (assumption 1).

However, redunding the correlation node comes at the expense of power consumption
and thus, the network lifespan. Indeed, every correlating node is required to subscribe
and receive every alert and alarm sent by the area and process them. As a result, the
average power consumption of the correlating nodes is higher than other nodes in the
area. This means there is trade-off between battery life and redundancy.

31

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

3.3.2 Offline Logging Capabilities

Due to the drastic message reduction found at the gateway when using in-network
reasoning, auditing the system becomes difficult. Auditing is needed by the network
operator to understand what is going wrong with the system in case of false positives or
false negative detections.

We consider a false positive happened when the network emitted an alarm when no
real event happened. Likewise, a false negative happened when the network did not emit
an alarm when a real event happened. At a sensor’s level, a false positive happens when
the node sent an alert when no meaningful event happened and a false negative when it
did not send one when it should have.

A false negative can happen when the sensor did not detect the event (wrong polling
frequency on the sensor or wrong calibration). A false positive can happen when the
sensor’s sensitivity is too high or if detected an event that was not meaningful to the
network (a dog instead of a pedestrian for instance).

To address this problem, we propose that the correlating node should be required to
store the history of what happened in an area in the past hours or days. Given the
stringent constraints found on sensor nodes, it is impossible to store all the data. It is
thus important to find an efficient way to only keep meaningful data.

The proposed solution stores events. An event is characterised by a local time stamp,
a confidence level and the list of sensors contributing to this event and their relative
contribution to it.

The system can only store a selected few events. Events older than the history storage
will first be deleted. When a new event needs to be stored, a usefulness score is attributed
to each event in the history. The event with the lowest score gets replaced by the new
event.

An important event is an event that both drove the confidence level close to the alarm
threshold and was also a local maximum for a long time. However, when an event gets
older, its importance tends to lower. This is why the scoring system (3.3) depends on
the confidence level of the event, how long it was a local maximum and the age of the
event.

score(e) =
confidence(e) ∗ local max time(e)

1− age(e)
max storage time

(3.3)

An event is not stored in the history unless it reaches the history threshold. An example
of the evolution of an area’s criticality level can be seen in Figure 3.7.

32

3.3 Contributions

t0 t0

threshold

criticality

level f(t)

t1 t2 t3t4

history

threshold

t5

Figure 3.7: Example of the evolution of an area’s criticality level with regards to the the
history threshold

This Figure features the same criticality level evolution as in Figure 3.6 with the
addition of the history threshold. In this example, only the events at t2, t3, t4 and t5 will
be stored to the history because the others did not increase the criticality level enough
to reach the history threshold. The most significant entry would be the one found at t4
because it is the one with the highest criticality level and it has been the local maximum
for a long time. The least significant event in this example is the one from t3, despite its
relatively-high criticality level. This is because it has been the local maximum for a very
short period. This event will thus be the first one to get deleted if space was becoming
a problem.

The history along with all the other parameters and context can then be queried on-
demand by a network operator using a REST-like protocol such as CoAP [57]. This
improves the network’s debugging abilities without needing an external radio to spy on
the exchanged messages.

3.3.3 Sensors Reputation Management

The history is not only useful to the network operator, it is also useful to the WSN
itself. An obvious usage of the history is to juge how useful a sensor usually is at detecting
a certain type of event. We refer to this usefulness score as reputation.

Reputation is separated in two scores:

• False positive: How often are the events emitted by a sensor not correlated with
his surrounding nodes;

• False negative: How often is a sensor not participating in the correlation of real
events.

Both reputations are represented by a value ranging from 0 to 1, 0 being the lowest
possible reputation and 1 being the best one.

reputation fp(a, s) =
area detection count involving(a, s)

sensor events count(s)
(3.4)

33

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

False positive reputation is calculated when alerts are deleted from the history. When
an alert is deleted, the detection count (sensor events count(s)) of the associated sensor
is incremented. If the alert has been used to emit an alarm, then the alarm counter of the
associated sensor (area detection count involving(a,s)) is incremented. The false positive
reputation is just the ratio of alerts that have been correlated over the total alert count
for a given sensor. The equation is detailed in (3.4).

reputation fn(a, s) =
sensor correlated count(s)

area detection count(a)
(3.5)

False negative reputation is calculated when an event is added to the history. If the
event is an alarm, then the alarm count (area detection count(a)) is incremented. Then,
all the sensors that participated to this alarm have their correlation count incremented
(sensor correlated count(s)). False negative reputation is the ratio of how many times a
sensor was involved in the emission of alarms over the total alarm count, the equation is
detailed in (3.5).

Additionally, the reasoning node could alert the operator when one sensor gets one of
his reputations lower than a certain threshold. It can also be used during the correlation
process to weight a sensor contribution according to its false positive reputation. A lower
false positive reputation would result in a lower contribution during the event correlation.

Finally, we propose that sensors producing too many false positives should be evicted
from the correlation process to avoid polluting the history of the correlation node and
reduce the number of false alarms. Likewise, we propose that if a node has too many
false negatives, they should be evicted or simply not taken into account when calculating
the threshold. We propose those binary decisions because the area’s threshold compu-
tation should be stable which prevents using the false positives/negatives values for the
criticality and/or the threshold computation.

3.3.4 Summary

The decision process we proposed in our modality-agnostic collaborative detection of
spatio-temporally correlated events proposition has two levels, as can be seen in Fig-
ure 3.8.

Sensor

nodes
Correlation

node
Sink

alert alarm

Figure 3.8: The two levels of reasoning

The first level of reasoning aims at sending the minimum amount of information as
possible to keep the current view of the correlation node up to date without streaming a

34

3.4 Evaluation

continuous stream of data. The first level thus runs on all the nodes hosting one or more
sensors and aim at detecting events using only values returned by the sensor. When an
event happens, the node hosting the sensor sends an alert to the correlation node with a
confidence level ranging from 1 to 3.

The second level of decision-making aims at correlating the alerts sent by the sensors
of the area before sending alarms to further reduce the number of messages sent in the
network. This also attaches semantic to the messages which allow automatic an automatic
response by the network.

Since the correlation node is filtering most of the messages of the area, it would be
impossible for the operator of such a network to audit the cause for a false positive or a
false negative. To enhance the auditing capabilities of the network, we proposed storing
a history of the most important events that happened in the network for a defined period
of time.

Finally, we proposed a reputation mechanism to detect faulty sensors automatically to
alert the network operator. This mechanism can also be used inside the network to evict
faulty sensors from the correlation process.

3.4 Evaluation

This research was conducted during the DIstributed Applications and Functions Over
Redundant Unattended Sensors (DIAFORUS) ANR project [81]. The project’s goal
was to develop an energy-efficient framework for distributed applications and functions
over redundant unattended sensors. As a demonstration of the framework, an intrusion
detection application was written using redundant and heterogeneous sensors.

For evaluating the contribution, we used a physical intrusion detection scenario. The
latency of detection should be under 10 seconds and usually around 5 seconds. It was
decided that sensor nodes should not correlate values for more than 1 second before
sending it to the network. This leaves up to 4 seconds for the network to carry the
detection message and its acknowledgement (ACK). The event is re-emitted if no ACK
is received by the sensor node that emitted the detection message.

It is however unnecessary to flood the network with alarms when an intrusion is de-
tected. Two alarms can be separated by at least the area’s minimum crossing time unless
a new sensor has been correlated with an existing alarm. This amendum to the rule is
made so as the operator gets new meaningful information in the timeliest fashion. This
proposal enables the operator to be aware of the current situation while also limiting the
number of messages.

The evaluation has been carried out in a custom-made emulated environment based on
FreeRTOS. Each emulated sensor node is executed as a FreeRTOS Linux process. When
a sensor sends a message, instead of sending it through the radio like it would be done

35

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

on real nodes, the message is sent using TCP sockets to a program called dispatcher.
The dispatcher emulates the communication medium. It forwards the message to the
destination node if nodes are within reach of each other.

The dispatcher gets the sensor nodes’ location from an XML deployment file we de-
signed. This file not only lists the sensor nodes, their positions and their radio range,
it also contains all the sensor-specific configuration such as what sensors (modality) are
connected to each sensor node and how (I2C address, gpio line, ...). This deployment file
is used to generate the node configuration as C header files that are then compiled and
linked with the node’s firmware. This compilation process is controlled by a custom-built
python script called “build network.py” which can also be used to flash the firmware of
all the nodes. An example of such a file is available in Appendix C.

For the network layer, we decided to use IPv6 Low Power Wireless Personnal Area
Networks (6LoWPAN) instead of IPv6 because of its reduced header size.

Routing is handled using RPL [52], an IPv6 Routing Protocol for Low-Power and Lossy
Networks, because it is becoming a standard in wireless sensor networks. We use to query
nodes via the REST protocol CoAP [57] and route PubSub messages from/to the broker.
RPL’s DIO mechanism is used as an heartbeat indicating to surrounding node that the
node is still available. This heartbeat is used to detect faulty nodes.

In simulation, the values read by the sensors are generated using a simulation environ-
ment called Diase. This environment, developed for DIAFORUS, enables:

• the deployment of a simulated network;

• the creation of intrusion scenarios;

• the monitoring of both sensor nodes and the network.

The general interface of Diase while running an intrusion detection scenario can be
seen in Figure 3.9. It showcases 2 areas containing 8 nodes, 3 seismic sensors, 2 infrared
directional barriers sensors, a multi-directional barrier sensors and 1 actuator (an alarm).

The monitoring view gathers data from the network using a REST protocol for Con-
strained Applications called CoAP [57]. It then displays the gathered data into a textual
or a graph form. Examples of such graphs can be seen in Figure 3.10. More information
about Diase and all its capabilities is available in Appendix D.

3.4.1 Modality-agnostic Collaborative Detection of Spatio temporally
Correlated Events

Distributed and collaborative detection is meant to lower both the number and the
average length of communications. We evaluate those metrics in this subsection.

36

3.4 Evaluation

Figure 3.9: Screenshot of Diase running an intrusion scenario in real time and injecting
simulated events to the emulated wireless nodes.

Sensors are never perfect, if calibrated to detect the smallest event they will be prone
to false positives. We choose to model the detection of an event by a sensor using a
Bernoulli distribution. When no real intrusion is going on, sensors will have a probability
p of wrongly detecting an intrusion and a probability of 1− p of not detecting one. The
experience is repeated every second.

This means there is a probability p of getting a false positive. Knowing this, We evalu-
ate how many messages are exchanged in different kinds of Wireless Sensor Networks. A
distinction between short-distance (one hops) and long-distance (towards the gateway)
communications is also introduced. The number of messages is then compared to the
number of values read by the sensor. This comparative study is done for an area of 3
nodes, reading values every second for 30 minutes. The results can be found in Table 3.1.

In the tree topology WSN, all sensors readings are forwarded to the gateway every
second to fulfil the 1 second correlation time rule. This only generates long-distance
traffic and is the worst possible case.

In the cluster data aggregation WSN, 2 of the 3 sensors send their values to the ag-
gregation node. This node aggregates these 2 values with the value of his sensor in one
message before sending it to the gateway. This means 67% of the traffic is local and 33%
of the traffic is long-distance.

In the local event detection, sensors detect intrusions themselves. When they detect
a suspicious event, they forward the acquired value to the gateway. As the sensor’s
probability to detect an event is 10%, then 10% of the values read are forwarded to the

37

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

(a) Criticality level of an area (b) Types of packets received

Figure 3.10: Example of the real-time visualisation capabilities of Diase

gateway and thus, be considered as long-distance communications. No short distance
traffic is generated.

In the collaborative detection WSN, when sensors detect an event, it is sent to the cor-
relation node. This node then correlates these events that expire after a certain amount
of time that depends on the maximum time it takes to cross the area. This means up to
10% of the communications will be local. This value depends on the number of sensors
connected to the correlation node. Telling how often a long-distance communication will
happen is non-trivial because this highly depends on the algorithm used to correlate the
local events.

We now move on to testing the influence of the sensor noise and the correlation time
on the number of short-distance and long-distance communications in our proposal. All
these communications are false positives, so lower is better. We simulate the worst case
scenario, when no sensors are connected to the correlation node.

In Table 3.2, we evaluate the influence of the correlation time over the number and
length of communications. As expected, the number of local detections is around 10%,
which is the sensor noise. Concerning the long-distance communications, the longer the
correlation time, the higher the number of messages. This can be explained because the
longer the correlation time, the higher the probability of correlation between sensors.
Areas should then be as small as possible to limit the number of false positives.

In Table 3.3, we evaluate the influence of the sensor noise over the number and length
of communications. As expected, the number of local detections is linear with the sensor
noise. Long distance communications count is increasing with the sensor noise.

In tables 3.2 and 3.3, the number of long distance communications do not scale linearly
with the correlation time and noise probability because of the no-alarm-re-emission policy
that is meant to limit the number of messages. In the case of Table 3.3, when p=1, we got
an average of an alarm every 8.5 seconds even though the minimum intrusion time was

38

3.4 Evaluation

Correlation readings short-distance long-distance long
short

ratio

c=10s 5400 545 (10%) 8 (0.15%) 1.5%
c=20s 5400 558 (10.3%) 23 (0.43%) 4.1%
c=40s 5400 541 (10%) 32 (0.59%) 6%
c=60s 5400 516 (9.5%) 33 (0.61%) 6.3%
c=90s 5400 525 (9.7%) 40 (0.74%) 7.7%
c=120s 5400 518 (9.5%) 41 (0.76%) 7.8%
c=150s 5400 552 (10.2%) 50 (0.93%) 9%
c=180s 5400 520 (9.6%) 56 (1.03%) 10.7%

Table 3.2: Message count in DIAFORUS with noisy sensors (f=1Hz, p=0.1) and a correla-
tion time c. Experiment time of 30 minutes.

Sensor noise readings short-distance long-distance

p=0 5400 0 (0%) 0 (0%)
p=0.002 5400 11 (0.2%) 0 (0%)
p=0.02 5400 94 (1.7%) 0 (0%)
p=0.1 5400 545 (10%) 56 (1.03%)
p=1 5400 5400 (100%) 210 (3.89%)

Table 3.3: Message count in DIAFORUS with noisy sensors (f=1Hz, p) and a correlation
time of 180s. Experiment time of 30 minutes.

set to 10 seconds. The 15% difference is due to the amendum to the no-alarm-re-emission
policy that states than an alarm could be re-emitted if a new sensor was correlated with
the on-going alarm.

With a relatively small correlation time (60s) and a relative low probability of false
positive (2%), no alarms have been emitted during these 30 minutes. In normal situations,
both the number and the average length of communications were lowered compared to
non-collaborative approaches. Sensors’ average noise determining the minimum number
of messages that will be sent. In the worst case scenario studied, the number of messages is
increased by 3.89% compared to the “Tree-topology WSN” architecture while the average
communication distance tended towards one hop which is a considerable improvement
on large scale networks for both latency and power consumption.

3.4.2 Sensors Reputation Management

In the previous subsection, we investigated the influence of the average sensor’s noise
and the maximum intrusion duration on the average communication length and the
number of messages. We saw that most of the time, the reasoning node was able to filter
out false positives as long as sensors are not too noisy. In the case of a single faulty
sensor, it is likely that the operator will never receive any information concerning this
sensor. We propose using our reputation contribution to make sure the operator gets

39

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

this information by sending a “faulty-sensor” pubsub message containing the ID of the
faulty sensor when the false positive or the false negative reputation drops below 0.5 and
there at least 3 detections.

We created one scenario with sensors that are not correlated in each area to validate
both the false positive and the false negative computation. It features 2 areas which can
be seen in Fig. 3.11.

Figure 3.11: Scenario validating the reputation. 2 areas, 6 sensors.

Area 1 is composed of sensors 1, 2 and 3 and is meant to test false negatives. An
intruder is repeatedly detected by sensors 1 and 2 but is never detected by sensor 3. No
sensor noise was added to ease validation. After some time, nodes 1 and 2 are expected
to have both a perfect false negative and a perfect false positive reputation. However,
node 3 is expected to have a perfect false positive reputation but the lowest false negative
reputation because it never contributed to any alarms.

Area 2 is composed of sensors 4, 5 and 6 and is meant to test false positives. An
intruder is repeatedly detected by sensors 5 but is never detected by sensors 4 and 6.
Again, no sensor noise was added to ease validation. After some time, nodes 4 and 6
are expected to have both a perfect false negative and a perfect false positive reputation.
However, node 5 is expected to have a perfect false negative reputation along with the
lowest false positive reputation because none of the alerts it sent led to emission of an
alarm.

Results found in Table 3.4 perfectly match the expected reputation values. These
results demonstrate the ability of our proposal to detect both the false positive and the
false negative cases.

40

3.5 Real-life deployment

Node ID False positive reputation False negative reputation

1 & 2 1 (18/18) 1 (283/283)
3 NaN (0/0) 0 (0/283)

4 & 6 NaN (0/0) NaN (0/0)
5 0 (0/9) NaN (0/0)

Table 3.4: Results of the reputation experiment found on Fig. 3.11

We then simulated the impact of noise (p=0.1, f=1Hz) on the sensors’ reputation. No
simulated intrusion is running during this experiment. The results are shown in Table 3.5.

Node ID False positive reputation False negative reputation

1 0.34 (57/168) 1 (119/119)
2 0.34 (57/167) 1 (119/119)
3 0.34 (57/169) 1 (119/119)

Table 3.5: Reputation of noisy sensors (p=0.1, f=1Hz) after 30 minutes and correlation
time of 20 seconds

With a noise probability (p=0.1, f=1Hz), sensors apparently sent an alert every 10.7s
in average. With a correlation time of 20 seconds, it was pretty likely for all sensors to
be participating in all alarms that were sent during these 30 minutes. This explains the
false negative reputation of 1 for all three nodes.

As expected, the false positive reputation of sensors 1, 2 and 3 is relatively low. It
would be even lower if not all sensors were faulty or if not all sensors were so noisy
because less alarms would have been sent.

3.5 Real-life deployment

The results presented earlier have been obtained using a simulated network. However,
in the DIAFORUS ANR project, we ported this network on real nodes and validated the
simulation results. The algorithms used for the simulation are the ones used on the real
nodes. This means our proposal is feasible on standard sensor nodes. The hardware used
and the tested scenarios are presented in Appendix E.

3.6 Conclusion

In this chapter, we demonstrated a modality-agnostic collaborative detection of spatio-
temporally correlated events. Correlating sensors’ values inside the network instead of
forwarding data to the gateway achieves a drastically lower and more evenly-spread power
consumption by both reducing the amount and localising communication.

41

3. APPLICATION & NETWORK: DECENTRALISED PROCESSING

Our contribution enhances the state-of-the-art collaborative networks by abstracting
sensors which allows the reasoning node to correlate ill-calibrated heterogeneous sensors.
It also allows short-loop automatic responses to events detected in the network. This
abstraction finally eases the creation of better auditing capabilities that overcome the
debugging problems found in decentralized data processing by providing introspection
inside the network and nodes. These capabilities can be used by both the operator
and the network itself to, for instance, automatically react to faulty sensors, in a true
autonomic fashion.

Future work will focus on improving the reputation management by allowing the WSN
operator to report false positives and false negatives. This would increase the accuracy
of the sensors’ reputation by letting the operator specify when an intrusion happened
and the criticality level did not rise enough to reach the threshold. The possibility of
improving the criticality threshold computation by taking into account the reputation of
each node to make sure the threshold can be reached will also be investigated. A study
should also be carried out to evaluate the power consumption cost of adding redundancy
for the correlation node. Finally, the influence of the sensor density over the number of
communications will be studied.

42

Chapter 4

PHY/MAC: Efficient spectrum
sharing

Contents

4.1 Introduction . 44

4.2 State of the art . 45

4.2.1 Software-defined radios . 45

4.2.2 Cognitive Radio Networks . 47

4.3 Detecting transmissions with software radios 48

4.3.1 Time Domain vs Frequency Domain 48

4.3.2 Filtering in the frequency domain 49

4.3.3 Decoding and collecting statistics 51

4.3.4 Collaborative sensing . 52

4.3.5 Software & Hardware architectures for software radios 55

4.4 PHY-layer signalling protocol 58

4.4.1 Bootstrapping . 59

4.4.2 Advertising . 59

4.4.3 Scanning for other cognitive radios 60

4.4.4 Updating the hopping pattern 60

4.4.5 Keeping nodes’ hopping pattern synchronised 61

4.4.6 Evaluation . 62

4.4.7 Conclusion . 67

4.5 MAC-layer signalling protocol 68

4.5.1 The WTS, RTR and RTS frames 69

4.5.2 Selecting the modulation of the control frames 71

4.5.3 Discussion . 71

4.6 Conclusion . 72

43

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

4.1 Introduction

After providing in the previous chapter a coherent contribution to green networking
involving the application layer down to the network layer, we continue to go down the
OSI stack to study how to improve the communication capabilities in wireless networks.

Nodes of a wireless network generally use the radio frequency (RF) spectrum to com-
municate using techniques we described in the state of the art. However, the modulated
RF signal propagates itself from the source to the destination(s) through a shared com-
munication medium.

Sharing this medium is difficult because of its heavy attenuation compared to the one
usually found in wired communication mediums. This means that every node of the
network has a different view of the spectrum. It is thus not possible for a node to make
the assumption that if the medium is free on its side, that it is free for all the nodes that
are supposed to receive the transmission (“hidden-node” problem). This is problematic
because when two incoming RF signals of similar power interfere with each others at a
receiving node, the node’s radio cannot demodulate and decode any of the transmissions.
The two transmissions are then said to have collided.

Collisions are thus the enemy number one of wireless networks because they use up
bandwidth without transmitting any meaningful information. They also increase the
communication delay as messages need to be sent again after a random back-off delay
growing exponentially to avoid congesting the medium even more.

To increase the reliability and the immunity to outside interference, it is possible to
use error detection and correction codes such as the Forward Error Correction (FEC)
codes. Such codes can correct messages with up to n bits inversions and be able to
detect m, with n <= m at the cost of added redundancy in the message. However, these
correcting codes are not sufficient to allow a receiver to correctly decode a message if
multiple transmissions happened at the same time in its vicinity.

Making communications more resistant to outside interference requires spreading the
communication on a wider frequency spectrum. The most resistant technique is called
Frequency-Hopping Spread Spectrum (FHSS) [82]. It requires the emitter to split the
message in sub-messages that will each be sent on a different frequency. The receiver
needs to listen on the right frequency at all time which means the receiver has to know the
hopping sequence in advance and need to be synchronised with the emitter. Coupled with
error correction codes, a message sent in FHSS could be resistant to multiple channels
being non-free during the transmission, depending on the code used. This leads to an
increased reliability of the communication link.

Another way of increasing the reliability of transmissions is to use Direct-Sequence
Spread Spectrum (DSSS) [82]. This technique increases the bandwidth of the trans-
mission but increases the resistance to intended and unintended jamming thus allowing

44

4.2 State of the art

multiple users to share the same channel. This technique can only be used in multi-
MHz-wide bands. If the transceiver is operating in a narrow frequency band, FHSS
could be used. DSSS and FHSS are the most common ways of increading the resistance
to jamming but other solutions exist.

All the presented solutions increase the likeliness of receiving a message but it is still
possible to completely block their communications. Evading crowded or perturbed fre-
quency bands is difficult on a traditional radio because it is not possible to be both
available to receive messages and to look for non-crowded frequencies (sensing) without
adding a preamble longer than the time it would take for radios to check the occupancy
of another band. Long preambles are not a good solution as they needlessly use the chan-
nel longer than actually needed, increasing the pressure on an already-limited resource.
Software radios are a solution because they can perform sensing in a wide frequency band
while receiving one or multiple communications in the sensed frequency band.

Contrarily to hardware/traditional radios, software (SW) radios do not demodulate the
signals themselves, they merely sample the voltage found at the antenna or the output of
a mixer. This allows computers connected to the software radio to listen to any frequency
band available in a much larger tunable frequency range. The width of the frequency
band can also be controlled by how often the voltage is sampled. This allows them to
analyse their surroundings and become true cognitive radio nodes (CR).

In this chapter, we propose a PHY- and a MAC-layer signalling protocol to take ad-
vantage of the capabilities of SW radios in order to create a network resilient to unin-
tentional jamming. Section 4.2 introduces the state of the art relative to software radios
and cognitive nodes. Detecting transmissions using SW radios is detailed in Section 4.3.
Our propositions for the PHY and MAC signalling protocols are respectively found in
Sections 4.4 and 4.5. We conclude in Section 4.6 and present the future work.

4.2 State of the art

4.2.1 Software-defined radios

In essence, a software-defined radio is simply composed of a device that converts elec-
tromagnetic waves into voltage (an antenna) and then connects it to an Analog-to-Digital
Converter (ADC) to sampling the voltage very rapidly. An ideal radio is shown in Fig-
ure 4.1.

Figure 4.1: A simplified vision of a software-defined radio

45

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

Such a radio would work as long as no frequency received by antenna would be higher
than half the sampling frequency (fs) of the ADC to avoid aliasing effects, as described
by the Nyquist frequency. For instance, in baseband processing, a sine at x Hz above
fs/2 would “generate” two sines of respectively x Hz and (fs/2)− x Hz after sampling.
To avoid this case, a low-pass filter should be added before the ADC to attenuate every
frequency above half fs/2.

ADCs have a finite dynamic range as they output samples with a fixed number of bits
to represent them. If an ADC outputs n-bit samples and the maximum voltage it can
receive is Vmax, then the minimum voltage that can be registered is Vmax

2n .

As the received power at the antenna is usually extremely low and ADCs are quite
sensitive to noise, it is better to first boost the voltage using an analog low-noise amplifier
before sampling it.

Another problem with the presented design is that ADCs cannot reach multi-GHz
sampling rates at a reasonable cost. It is also almost impossible to handle such a quantity
of data in real time without using a super computer. It is however possible to use a mixer
to modulate the received signal with a local oscillator (LO) to shift the frequency of the
signal found at the antenna, allowing us to move the RF window of interest around the
0 Hz frequency. The LO’s frequency determines by how much the spectrum is shifted.
This operation however creates a complex output which forces the radio to add another
ADC sampling the voltage at a 90° phase difference to get both the real and imaginary
samples (which we will later refer to as I and Q). Because a sample is now a complex
number, the Nyquist frequency states that the maximum frequency allowed is the same
as the sampling frequency.

Instead of using a fixed LO frequency, it is possible to use crystal to generate a fixed fre-
quency which can be multiplied before being divided using a Phase-Locked Loop (PLL).
We will introduce PLLs further in Chapter 5.

After all the proposed modifications, we obtain the radio found in Figure 4.2. This
radio allows us to listen to a specific window in the RF spectrum. The central frequency
is specified by changing the LO’s frequency and its width can be changed by varying the
sampling frequency.

Figure 4.2: A simplified vision of a software-defined radio

46

4.2 State of the art

For instance, the bladeRF [83], from the company Nuand, can receive or emit signals
in a frequency band of up to 28MHz with a central frequency ranging from 300MHz to
3.8GHz. The computer can then perform the sensing operation to detect transmissions
happening inside this 28MHz window and also decode them at the same time by copying
the received signal and filtering it with a band-pass filter around each transmission. With
a software radio, it is thus possible to evaluate the interference found in the spectrum
window while receiving transmissions.

In Table 4.1, we compare the characteristics of different software-defined radios. The
sample rate, given in mega samples per second, varies by two orders of magnitude between
the cheapest and the most expensive radio. The interface that links the radio to the
computer is also important since it has to have a throughput sufficient to stream all the
RX and TX samples to/from the main computer.

Name Tunable band Sample Rate RX/TX Interface Price

RTL2832U [24, 1766] MHz 2.4 MSps RX-only USB2 $10
HackRF One [10, 6000] MHz 20 MSps Half duplex USB2 $299
BladeRF [300, 3800] MHz 40 MSps Full duplex USB3 $420

USRP B200 [70, 6000] MHz 56 MSps Full duplex USB3 $675
USRP X300 [DC, 6000]* MHz 200 MSps Full duplex PCIe $3900

Table 4.1: Comparing different software radios. The USRP X300 cannot listen from DC
to 6GHz continuously, it requires the appropriate daughter-boards which all have a smaller
tunable band.

We did not however compare the size and the speed of their FPGAs nor the speed of
their embedded microprocessor which would allow us to offload some operations.

4.2.2 Cognitive Radio Networks

The simplest form of cognitive radio network uses a Common Control Channel (CCC)
that is used to initiate communications and exchanging sensing information [84][85]. The
drawback of using a CCC is that it presents a single point of failure and does not scale
well with multi-hop ad-hoc networks. It is thus better not to use a CCC although it
presents other difficulties [86]. Indeed, in the absence of a CCC, transmissions could
happen anywhere in the RF spectrum. In order to communicate, two transceivers first
need to find each others by using a “blind rendez-vous” technique [3] which can guarantee
two receivers will find each others if they have one available channel in common. Nodes
willing to rendez-vous should all agree on a channel list and follow the jump sequence
given by the algorithm. This requirement is hard to enforce in software radios because
each CR may have a different list of available bands which are unlikely to translate to
the same channel. However, the major problem is that when a CR is willing to find
other CRs, it should start following the hopping pattern given by the algorithm which is
incompatible with communication with other CRs.

47

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

In [4], the proposed MAC protocol provides a decentralised and CCC-free rendez-vous
mechanism which also uses the Signal-to-Noise Ratio (SNR) in order to use the fastest
modulation achievable. This approach is the most resilient one we found although it
assumes that CRs already know their surrounding nodes and that a channel list is shared
between them. The first assumption can be satisfied by adding a beaconing mechanism
where CRs broadcast their presence. However, the second assumption is problematic
because SW radios usually require knowing the central frequency of a transmission to be
able to decode it. Not having a channel list available means a different way of detecting
transmission is required. This approach however uses spectrum for every frame as the
synchronisation is limited to transmitting one frame. Finally, this proposition does not
directly allow a CR to receive or emit multiple frames at the same time.

Implementing MAC protocols in a SW radio has additional challenges coming from the
fact that samples are not processed close to the ADC like in usual radios [17]. Samples
are usually sent to a computer using a non-real-time communication medium, such as
USB or Ethernet, and processed on a non-real-time operating system. A lot of buffering
is thus necessary to keep the radio fed with the samples. This buffering increases the
latency and the variability of the emission and reception time. Signalling protocols in
CRNs need to be able to cope with this variability.

4.3 Detecting transmissions with software radios

The way transmissions can be detected and decoded using SW radios is quite different
from traditional radios. Since our propositions heavily make use of these differences, we
briefly introduce spectrum sensing and our software infrastructure.

The software radio we used when designing this interface is the USRP1 [87], from Ettus
Research. We then used a USB2 connection and the libUHD [88] to control the radio
and access the RX and TX sample streams.

4.3.1 Time Domain vs Frequency Domain

Traditional radios can only decode one transmission at a time, they tune to a central
frequency, set filters and the sampling rate according to the fastest modulation that will
be used and wait for the power received by the antenna to be higher than a threshold that
depends on the thermal noise of the radio. Such detection algorithm is said to process in
the time domain because it operates directly on the samples. As an example, Figure 4.3a
shows the power received by the radio when no transmission is happening in the sensed
spectrum while Figure 4.3b shows the received power when one or multiple transmissions
are happening.

With software radios, it is possible to decode multiple transmissions happening at
the same time provided we frequentially isolate them. Detecting transmission in the
frequency domain requires to transform the samples we receive from the radio to the
frequency domain. This is done using a Fast Fourier Transform (FFTs). The output of
an FFTs is the received power and phase at various frequencies. The frequency resolution

48

4.3 Detecting transmissions with software radios

is linear with the number of samples used to compute the FFTs. In our case, we used
FFTss on 1024 samples. An example of the output of an FFTs is shown in Figure 4.3c
where at least 5 transmissions are clearly visible. Other transmissions could be visible
with the appropriate filtering to get rid of the thermal noise.

(a) Time domain, no transmission (b) Time domain, transmission

(c) Freq. domain, no filtering (d) Freq. domain, with filtering

Figure 4.3: Detecting transmissions in the time domain (4.3a, 4.3b) and the frequency
domain (4.3c). Sub-figure 4.3d illustrates the need for filtering the data from the frequency
domain before being usable.

This algorithm is in the energy-detection class of transmission detection. It has the
advantage of being agnostic to the modulation scheme used by the transmitters but it
works poorly in low-SNR ratio and DSSS scenarios. Other detection techniques could
be applied on top of our system, such as the cyclostationary detection technique, to
help improve the detection of low-SNR signals at the expense of CPU usage. Since
our proposition already consumes a full core of an i7 860 to perform time domain to
frequency domain conversion of 10 million samples per second, we did not investigate
these techniques.

4.3.2 Filtering in the frequency domain

Filtering the signal in the frequency domain can simply be done by averaging it because
the noise will cancel itself and the SNR ratio will go up. However, averaging works best

49

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

as long as the transmissions received are longer than the number of samples used in the
filter. This is problematic in frequency bands where some transceivers use FHSS. We
thus looked for another solution.

Although thermal noise is often considered additive, white and Gaussian (AWGN), we
experimentally found out that when using Ettus Research’s USRPs Software Radios, the
noise distribution was not Gaussian but rather mapped perfectly to an extreme value
distribution, given in Eq. 4.1, with µ = 1.67 and σ = 4.5578. The only variable element
was the average of the distribution which varies depending on the central frequency and
the offset to it in the spectrum window observed by the software radio. In Figure 4.4a,
we can see how well the model fits the experimental data.

f(x|µ, σ) =
1

σ
e

x−µ

σ e−e
x−µ

σ (4.1)

(a) Noise-only (b) Noise + frequent transmissions

Figure 4.4: Histogram of the received power at one frequency

Based on Eq. 4.1, we propose to set a threshold right at the maximum power taken by
the noise (14 dB after the tip of the curve). If the received power exceeds this threshold,
this means that additional power has been received by the antenna and thus that a
transmission is happening. In Figure 4.4b we can find the histogram of the received
power at a given frequency in the presence of an intermittent transmission.

The end of a transmission is harder to detect because the noise may “pull the power
down” under the threshold unless the received power is above the noise’s “variance”. We
thus propose to use the number of samples under the threshold as a way to detect the
end of a transmission. Eq. 4.2 represents the probability for the power to be under x
dB above the noise’s average. Using this equation, we can calculate n, the number of
samples under the threshold we need to wait in order to have a confidence probability of
pconfidence that the transmission has ended (Eq. 4.3).

p(x|µ, σ) = 1− e−e
x−µ

σ (4.2)

50

4.3 Detecting transmissions with software radios

p(x|µ, σ)n > pconfidence ⇔ n =
ln(1− pconfidence)

ln(p(x|µ, σ))
(4.3)

4.3.3 Decoding and collecting statistics

We are now able to detect the beginning and the end of transmissions in the frequency
domain. We propose to use this information to fill a table called the Radio Events
Table that contains PHY-layer metadata about transmissions such as the start/end time,
frequency band and the received power at the antenna. Using this information, a decoder
reads the samples that contain the transmission, apply a pass-band filter to only let this
transmission pass, roughly correct for the massive frequency offset and feed this to the
usual demodulators used in software-defined radios. The demodulated frame can then be
used to add additional information to the Radio Event Table such as the source node’s
ID and its nature (primary or secondary user). The ID could be the MAC address of
the source node when applicable or an ID generated by the first CR that detected the
transmissions for broadcasting emitters such as FM, TV or radar transmitters. Figure 4.5
presents an overview of the sensing/receiving process.

Figure 4.5: Overview of the sensing process - Filling the Radio Event Table from the
software radio’s sample stream

These experimentations have been used as part of the LICoRNe project, funded by
the French National Research Agency (ANR), in order to create a video stream between
two CRs that hops onto another channel when a primary user (PU) appears in the
current channel. Additional experimentation on transmission detection, demodulation
and transmissions in the time domain have also been used by 8 students for building
a smart box capable of detecting its surrounding wireless sensors and automatically

51

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

finding their modulations. Our experimentations are available publicly [89] and some are
partially explained in Appendix F.

4.3.4 Collaborative sensing

It is critical for a CR to be able to identify transmissions happening in its vicinity to
avoid accidentally interfering with a primary user.

If a CR is unable to identify the origin of a transmission, either because it was already
happening when the CR arrived in the band or because it the SNR is insufficient, the
CR should request its neighbours to provide information about this transmission.

Sensing

Time Frequency P/S/U Received Power

before ampli.
ID

U[860..865] -110 dBm[t1, ...] ?

...

Sending Coverage Area. Unknown User

Key map:

?
Sensing Coverage Area. Secondary User

Primary User

A ?

0
.S
e
n
d
in
g ?

B4

Figure 4.6: Collaborative Sensing: CR A performs sensing and detects a new transmission

In Figure 4.6, CR A is performing sensing in the RF spectrum when it detects a new
transmission. The CR creates an entry in its Radio Event Table containing the time at
which the transmission began, the frequency band it uses and the power received at the
antenna. Since it does not know yet if the transmission originates from a primary or a
secondary user (SU), it tags the transmission as coming from an unknown source.

Demodulating and decoding the frame

Time Frequency P/S/U Received Power

before ampli.
ID

P[860..865] -110 dBm[t1,+14ms] C31

...

...

C31

?

A

B4

Figure 4.7: Collaborative Sensing: CR A decodes the unknown frames and fills the RET

52

4.3 Detecting transmissions with software radios

In Figure 4.7, CR A attempts to find the PHY parameters of the transmission and
then try to demodulate it. If it succeeds, it forwards the frame to the MAC Layer that
in turns tries to decode the frame. If the CR A has successfully decoded the frame, it
tags the transmission as originating from a primary (“P”) or a secondary (“S”) user and
adds the source id of the emitting node to the corresponding entry of the Radio Events
Table. When the transmission ends, CR A completes the Radio Event Table entry by
adding the time at which the transmission ended.

Contrarily to what we found in the state of the art [90][91], we do not believe that
a primary user should be identified by PHY-layer parameters because it would force
secondary users to use other modulations for not good reason. Also, this technique has
been found to be unsecure as secondary users could impersonate primary users. Multiple
techniques have been proposed [92] but none is effective in a mobility scenario or if no
prior knowledge of where primary users are located.

Instead, we propose that a CR should be able to recognise if the frame bas been sent
by a primary or a secondary user based on its MAC address. We propose allocating new
entries in the 24-bit-long Organisationally Unique Identifier (OUI) for cognitive radios.
A secondary user could thus be easily detected by checking the first 3 bytes of its MAC
address. If a CR is a primary user in one band and a secondary user in another one, it
should use two different MAC addresses.

Our proposition is not secure as secondary users can use any MAC address they want.
However, we think that the only reliable solution to be able to distinguish a primary
from a secondary user would be for the state to grant certificates that the primary user
would broadcast from time to time or when it detects the activity of a secondary user
in its band. The certificate would contain the owner, the frequency band and the type
of usage allowed to this user. It would then be signed by a state-mandated authority as
the state is currently in charge of the spectrum allocation. A cognitive radio would only
need to be pre-loaded with the public keys of all the state telecommunication agencies
to be able to reliably distinguish PUs from SUs.

Collaboration

Figure 4.8: Collaborative Sensing: CR A did not manage to decode the frame and queries
its neighbouring CRs.

53

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

In Figure 4.8, CR A did not manage to demodulate or decode the frame. It thus
broadcasts to its neighbours the information about one or more transmissions it did not
manage to decode. The transmissions are identified by a time range and the frequency
band it was seen in. However, since the clocks of the radios are unlikely to be synchro-
nised, we proposed sending the start and finish time relatively to the time of emission of
the request. For instance, CR A would ask its neighbours what was the communication
that started 500 ms and finished 486 ms ago in the [860, 865] MHz band. If a neighbour
CR also wondered about the origin of this transmission and received CR A’s request, it
should simply wait for the surrounding CRs answer.

Time Frequency P/S/U Received Power

before ampli.
ID

P[860..865] -110 dBm[t1,+14ms] C31

...

...

4.
{O

}

4
.{
C
3
1
}

4
.{
B
4
,C
3
1
}

C31

?

A

B4

Figure 4.9: Collaborative Sensing: CR A receives 3 answers to its query and updates the
Radio Event Table.

In Figure 4.9, the surrounding CRs answer back to CR A’s request. One CR tells it
was a primary user with the ID C31. Another one says it could either be from primary
user B4 or C31 as both have the same attenuation. The last surrounding CR does not
know. Since there is no ambiguity, CR A thus tags the transmission as coming from the
primary user C31 in its Radio Event Table.

If a neighbouring CR is still waiting for the answer because it was not able to hear it,
it should send the request again. This mechanism reduces the number of requests sent.

Filling the maximum emitting power and the neighbours tables

ID Frequency Range Max Power Rx Max Power Tx

...
[850..860] -70 dBmC31 10 dBm

...

Neighbouring PUs table

FID Frequency Range Maximal Power ID

F1 [860..865] 10 dBm C31

[850..860] UnlimitedF0

F2 [865..915] Unlimited

N/A

N/A

Maximum emitting power over frequency table

5
.S
e
n
d
in
g

C31

?

A

B4

Figure 4.10: Collaborative Sensing: CR A now updates its maximum emitting power and
neighbours table to remember what the maximum emitting power that should be used in
every band.

In Figure 4.9, CR A discovered the presence of a primary user in the frequency band
[860, 865] MHz. In Figure 4.10, it stores in its neighbouring primary users (PU) table

54

4.3 Detecting transmissions with software radios

that PU C31 operates in [860, 865] MHz, that the maximum received power from this
node was -70 dBm and that the maximum power CR A can use without interfering with
this primary node. It also adds in its maximum emitting power table that the emission
power in the frequency band [860, 865] MHz should be limited to 10 dBm and that the
reason for this limitation is PU C31. If the PU was not to be heard from for some time,
this limitation can easily be deleted as it is linked to C31.

Conclusion

As a summary, upon sensing a transmission, a CR should follow the following flow-
graph, found in Figure 4.11.

Figure 4.11: Flowgraph of the collaborative sensing process among cognitive radios.

4.3.5 Software & Hardware architectures for software radios

The experience and experiments used to study both the hardware and software archi-
tectures necessary for software radios has been carried out on multiple USRP from Ettus
Research and Nuand’s BladeRF [83].

Receiving data from the Software Radio in the userspace

As seen previously in the state of the art about software radios, if a software radio
wants to listen to a spectrum window of 10MHz, it has to receive 10 million samples

55

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

per second. In software radios, a sample is actually a complex sample which means one
sample is composed of two 16-bits values.

Software radios usually send the sample stream through a USB or Ethernet interface.
When an application wants to access the stream, it asks the operating system (kernel)
to copy a chunk of the stream into the provided buffer. Since the USB and Ethernet
interfaces are multiplexing multiple streams for different applications, the kernel has
to de-multiplex data first before being able to synchronously write the samples to a
user-defined buffer. This copy uses CPU power while the constant system calls made
by the application to get the samples generate many context switches which is hurting
performance and latency. Since all these operations depend on caches and the general
load of the machine, this creates jitter that is very harmful when emitting samples because
latency needs to be increased in order to avoid buffer underruns which would result in a
corrupted signal. Characterisation of this jitter has been carried out by [17] and can be
found in Table 4.2. This test was done on a USRP1 [87] listening to a 8MHz spectrum
window, using a USB2 connection.

Measurement Avg SDev Min Max

User →Kernel (µs) 24 10 22 213
Kernel →User (µs) 27 89 13 7000
4096 Kernel ↔ FPGA (µs) 291 62 204 360
512 Kernel ↔ FPGA (µs) 148 35 90 193
GNU Radio ↔ FPGA (µs) 612 789 289 9000

Table 4.2: Kernel-level delay measurements on a USRP1 [17]

The fastest software radio found today is the USRP X300 [93], which can output up to
200 MS/s in Full Duplex. This represents 12.8GBit/s worth of data when transmitted as
16-bit integers. In order to cope with all this data, the kernel should be taken out of the
equation by allowing the software radio to write directly in the application’s memory,
using Direct Memory Access (DMA). Since the USB and Ethernet interfaces are not
meant to achieve this, Ettus Research introduced for this model a PCI-express interface.
With this interface, they claim to achieve a 10µs latency between the ADC and the
application responsible for processing the data.

Temporarily storing samples for immediate processing

In Figure 4.5, we saw that the samples coming from the software radio are first trans-
formed to the frequency domain before performing transmission detection. When a trans-
mission has been detected and its frequency band identified, the demodulator (which
operates in the time domain) needs to access the samples ranging from right before the
beginning of the transmission to a few samples after the end of the transmission.

First of all, this means that samples must be stored in RAM for a few hundreds of
milliseconds to give enough time for a demodulator to be instantiated. Secondly, it is

56

4.3 Detecting transmissions with software radios

necessary to be able to efficiently locate the samples that were used to compute an FFTs.
Thirdly, the data structure may contain samples taken with different parameters for the
software radio (frequency band, bandwidth, gain, ...). Lastly, since we will store tens of
millions of samples per second, the data structure should be highly efficient.

We designed a new template-based data structure in C++ that never blocks and also
allows to annotate elements with meta-data. It is based on a ring buffer.

The “never block” property is important for this application as we want to cache the
latest N elements of a stream regardless of which thread is going to read them. The
point is that the producer (the software radio) should never be blocked and should keep
on adding samples. The problem with that property is that consumers cannot lock the
content they are reading. This means the content can be overridden by the producer
at any time while a consumer is reading it. A consumer should thus attempt to copy
the samples it wants to access before checking again that the first sample copied is still
available. If this is not the case, then the samples may have been overwritten during the
copy which makes it invalid.

The “annotate” property is important as some meta-data (the software radio’s PHY
parameters) need to be attached at some positions in the sample stream. This increases
the complexity of the ring buffer as both the meta data and the data should be added at
the same time. For this reason, we introduced a staging area to be able to expose both
the data and meta-data at the same time.

Samples are indexed using a 64 bits unsigned integer. We consider that an application
will not run long-enough to overflow this integer as it would take 97 years to do so with the
fastest software radio existing today (200 MSps [93]). This integer can be incremented
and/or read atomically using C++’11’s <atomic> library. Atomic operations cannot
be interrupted which makes them thread-safe. They are also way more efficient than
traditional locks.

We proposed a ring buffer that is thus thread-safe and lock-less. It works when there
are no more than one producer thread and as many consumer threads as needed. This
ring buffer also allows attaching meta data to samples to be able to know the parameters
of the software radio for each sample in the ring buffer. The code of this data structure
along with usage examples is available in Appendix G.

Power saving opportunities

To save power, the software radio could use its embedded processor to analyse the
sample stream to detect transmissions through energy detection. When the radio would
detect a transmission, it would send some samples from before the transmission and would
stop sending them a few samples after the end of the detected transmission. This would
save a lot of processing power on the main CPU when no transmission is happening which
would save a lot of power because the CPU is not as efficient as the software radio’s pro-
cessor. We experimented with this architecture in the hachoir UHD project that allowed

57

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

us to demodulate different types of modulation and PHY parameters automatically, as
shown in Appendix F.

To further increase the power savings, the software radio itself could detect transmis-
sions in the frequency domain, bring them in the baseband and decimate them before
sending them to the CPU. To do so, the software radio should implement in its FPGA
the Fast Fourier Transform in order to convert the signal from the time to the frequency
domain. The embedded processor could then detect transmissions in the frequency do-
main by following our filtering contribution. Finally, it would convert the signal to
baseband before sending the transmission to the main computer. In this case, the radio
would only output the minimum of information necessary for the CPU to decode all the
transmissions.

In our implementation of the proposition found in 4.5, we found out that a vast majority
of the computational time was spent on transforming the time domain to the frequency
domain. Having the radio offload this operation would thus offload the most expensive
operation.

We however did not have time to implement either power savings techniques to evaluate
how power would be saved as the best solution would require about a year worth of
implementation work to be able to have a working implementation.

4.4 PHY-layer signalling protocol

CRNs require information about the network topology, available channels, channel
fading and on which frequency bands any surrounding CR is available in order to pro-
vide efficient unicast or broadcast schemes. Unfortunately, the schemes proposed in the
state of the art try to reduce the requirements to provide connectivity at the expense of
spectrum utilisation, delay and throughput. Moreover, blind rendez-vous, unicast MAC
protocols and broadcast protocols are not compatible as they all require to be responsible
for selecting the frequency band the radio will listen and send on.

The goal of our PHY-layer signalling protocol is to allow CRs to find each others
(rendez-vous) and to know when and how to contact each others in the future, even if
CRs are hopping from frequency bands to frequency bands. To do so, CRs should have
at least part of their frequency hopping pattern predicable. Since CRs can be available
on a limited amount of bands without drastically increasing the maximum latency to
contact them, advertising the actual frequency hopping pattern explicitly is possible
without creating a very large beacon frame. Once the hopping pattern and the current
position in the pattern of a CR is sent in a frame, CRs that received it can predict
when and on which band they should send transmissions to this CR. To make this time
synchronisation more accurate, the emitting and receiving CRs should compensate for the
delay introduced by the kernel and the radio in the propagation of the emitted or received
samples. In a situation where no under-runs happen and the radio is emitting/receiving a
constant stream of samples, the TX delay is entirely predicable due to the fixed sampling

58

4.4 PHY-layer signalling protocol

rate. However, the average RX delay needs to be specified. A beacon example is given
below in its ASCII form.
<beacon_frame>{ node_id=23, tx_pwr=10dBm,

[

{ {band1}, len=0.4, period_offset=0.0 },

{ {band2}, len=0.4, period_offset=0.0 },

{ {band3}, len=0.3, period_offset=0.5 },

],

period=1000ms, cur_period_offset=0.126 }

In this example, the beacon is sent by node id 23 which is available on 3 bands. At
the beginning of the hopping cycle, node 23 is available on both band1 and band2 for
400ms (0.4 ∗ 1000ms). At 500ms (0.5 ∗ 1000ms), node 23 will be available on band3
for 300ms. Node 23 is currently 126ms (0.126 ∗ 1000ms) in its hopping pattern cycle
which means the radio will stop being available on bands 1 and 2 in 274ms (400ms -
126ms). One slot of 100ms (400ms to 500ms) and one of 200ms (800ms to 1000ms) are
not currently allocated in the beacon. This allows the radio to either put itself to sleep or
perform sensing anywhere in the tunable frequency spectrum. This beacon has been sent
at 10 dBm, this allows the receiver to compare it with the received power to evaluate the
channel fading so as CRs can lower their transmission power if they assume the fading
is roughly symmetric. This enables power savings for the emitting node while reducing
spectrum usage.

Using this beaconing mechanism, it is possible for radios to define sleep periods which
would allow them to save power. Because this sleep period would be advertised in the
node’s beacon, surrounding radios will not have to constantly re-send packets to the
sleeping radio as they would know about its sleep pattern. The periodical emission of
beacon allows the radios to synchronise each others to compensate for their internal clock
drift.

4.4.1 Bootstrapping

We propose that when booting up, CRs should first sense the tunable spectrum in
order to find frequency bands that are usable without disrupting primary users. During
this sequence, the transceiver is passive and should linearly scan the tunable spectrum.
If beacons are received from cognitive users, they should be stored in a neighbours CR
list.

4.4.2 Advertising

Once some frequency bands have been found to be available, we propose a CR should
send its beacon when:

1. It becomes available on a frequency band;

2. No beacon has been sent on this band for some time;

3. Another CR requests the CR to resend it;

4. Another CR requests every CR to resend it.

59

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

Rules 1) and 2) generate a background traffic that allows CRs to keep their hopping pat-
terns synchronised without needing an external time-synchronisation mechanism. Rule
3) allows CRs to re-synchronise with one another and to check if a CR has left from the
band. Rule 4) enables a CR to request all his surrounding CRs to get the list of currently
available CRs on the current band to ease the discovery process.

4.4.3 Scanning for other cognitive radios

Our PHY-layer proposition is meant to make scanning as simple and un-intrusive as
possible for CRs. Information about surrounding CRs is gathered simply by receiving
their beacons. This operation can be done while being available on the advertised fre-
quency bands or while sensing the spectrum. The information about surrounding CRs
should be stored in a database containing the latest-received beacons of every CR.

Since the characteristics of the hopping pattern of surrounding CRs is not known,
the best approach to discover other CRs is to randomly hop in the frequency spectrum.
With our proposition, CRs can thus rendez-vous with unknown CRs at no cost and can
perform sensing if and when wanted.

4.4.4 Updating the hopping pattern

If two CRs need to communicate often or have a low-latency requirement, they need to
adjust their hopping pattern so as to maximise the time they spend being reachable from
one another. Changing the hopping pattern of a CR can be challenging to do locally
without breaking the connectivity of the CRN.

It is safe to update the frequency hopping period or drop a frequency band as long
as every neighbouring CR will still be available. This can be checked by finding at least
one periodical overlap between the CR’s new beacon and every other beacon from CRs
it can already communicate with. It is however unsafe to update the beacon and to rely
on a neighbour CR to maintain the connectivity because they may change their hopping
pattern in the future.

Since our PHY-layer signalling protocol provided the discovery and the loose time
synchronisation necessary for communicating with surrounding CRs and since the con-
nectivity problem cannot be addressed entirely locally, we believe that optimising the
hopping pattern is outside the scope of our proposed PHY-layer signalling protocol and
that it should be addressed at the network layer, with a cross-layer approach. An example
of hopping pattern optimisation is however available in Chapter 7.

Once a decision has been made to change the hopping pattern, the CR needs to adver-
tise its new beacon. A CR can change its hopping pattern abruptly but it may result in
CRs failing to contact it depending on the change that was made. To avoid this situation,
it may be necessary for the CR to advertise the change before it happens. If this is the
case, we propose that a CR should send its beacon with the UDPDATE flag set and also
containing the future cycle (bands + period). This beacon should be sent for an entire

60

4.4 PHY-layer signalling protocol

cycle before using the new hopping sequence. An example beacon is given below in its
ASCII form.

<beacon_frame>{ node_id=23, tx_pwr=10dBm, flags=UPDATE

[

{ {band1}, len=0.4, period_offset=0.0 },

{ {band2}, len=0.4, period_offset=0.0 },

{ {band3}, len=0.3, period_offset=0.5 },

],

period=1000ms, cur_period_offset=0.6,

[

{ {band5}, len=0.2, period_offset=0.0 },

{ {band3}, len=0.5, period_offset=0.5 },

],

period=2000ms }

In this beacon, node 23 is advertising a change in its hopping cycle. After the end of
the current cycle, which will happen in 400 ms, the period will be increased from 1 to
2 seconds. band5 will then be available for 400 ms before the radio is put to sleep for
600 ms. band3 will then be available for one second before returning on band5 for 400
ms again. A switch has happened. The beacon sent on this new hopping pattern is the
following:

<beacon_frame>{ node_id=23, tx_pwr=10dBm

[

{ {band5}, len=0.2, period_offset=0.0 },

{ {band3}, len=0.5, period_offset=0.5 },

],

period=2000ms, cur_period_offset=0.012 }

4.4.5 Keeping nodes’ hopping pattern synchronised

With time, the CRs’ clock drifts and their hopping pattern become less and less syn-
chronised. The clock difference between two CRs can be evaluated by one CR when
receiving a beacon from the other CR by comparing the expected cur period offset with
the value found in the beacon.

If the difference is small and relatively constant, it means that both CRs are counting
at roughly the same average frequency. It is thus possible to simply adjust our current
phase to the average phase of surrounding CRs in order to maximise its availability. To
do so, a CR computes the difference between the start of the cycle of each surrounding
CR with its own. An average phase error can thus be computed and the CR should
then adjust its own period offset to match this average phase in order to maximise its
availability. If every CR does that periodically, a tight time synchronisation between all
the surrounding CRs of a network is possible throughout its life.

If the difference is increasing steadily, it indicates that both radios do not count time at
the same speed. This would indicate that the crystal of one or both CRs is not oscillating
at the right frequency. It would be possible to correct for this frequency difference locally

61

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

if a reliable clock source was available. This is however not the case. Another solution is
to evaluate the clock difference between all the surrounding CRs, average it and consider
this average difference to be the reliable clock source necessary to compute the frequency
offset calibration. This will minimise the average distance with other CRs and will result
in a tighter synchronisation.

Not only does the proposed solution works locally but it also works globally in a ad-hoc
wireless network if all the cognitive CRs are following the same program. Indeed, if each
CR lowers the average phase and frequency difference between itself and its surrounding
CRs, then all the CRs will tend towards the same average frequency and will keep the
same phase.

The convergence delay of this proposition depends on the network size and how well
it is connected. Indeed, the less a network is connected, the longer it will take for all the
radios to converge as information takes time to propagate. On the contrary, if all the CR
of the network are connected to the every CR, each CR will only need to adjust its phase
and frequency once. A proper evaluation of convergence delay in common scenarios would
however be interesting, especially when taking into account the instability of clocks.

4.4.6 Evaluation

We evaluate the proposed mechanism on both software and hardware radios. To speed
up the experiments and evaluate the influence of every parameter, we wrote a non-real-
time simulator that allows repeating our experiments millions of time to get an accurate
average and maximum discovery time.

The source code of our C++ simulator is available publicly [89].

Software radios

To evaluate our proposition on software radios, we use two simulated CRs with a
tunable band ranging from 300MHz to 3GHz and a spectrum window of 25MHz. These
characteristics are similar to Nuand’s bladeRF [83] software radio.

The first node has a hopping pattern period of 1s and advertises two bands that are
available respectively in [0.0, 0.4] and [0.5, 0.9]. The two bands are selected randomly
at the beginning of the experiment. The node will send a beacon 5ms after switching to
a band and at a user-defined period after that. Beacons are sent at 1 MBit/s, using a
simulated bandwidth of 500kHz and 296µs to send it, according to the binary structure
of the beacon found in Figure 4.12.

Figure 4.12: Format of the beacon frame

62

4.4 PHY-layer signalling protocol

The second node performs only sensing. It randomly hops from one band to another
with a user-defined hopping period. The experiment finishes when the sensing node is
able to hear the entirety of a beacon sent by the first node.

Figure 4.13 shows the average time (over 10000 instances) that the sensing node takes
to receive a beacon from the other node depending on both the beaconing period and
the sensing hopping period.

100 101 102 103 104
100

101

102

103

104

Beaconing period (ms)

A
ve
ra
ge

re
n
d
ez
-v
ou

s
d
el
ay

(s
)

shp = 1ms
shp = 10ms
shp = 0.1s
shp = 1s
shp = 10s

Figure 4.13: Influence of the beaconing and sensing-hopping period on the average rendez-
vous delay.

In “shp = 1ms”, the sensing CR has a high probability of not hearing the complete
beacon because the sensing period is short compared to the emission time (280µs) of the
beacon. Multiplying by 10 the beaconing period increases the average rendez-vous 10
folds until reaching one second.

After this point, the only beacon sent by the CR is the one sent when hopping to a
new band because the hopping cycle takes 1 second and no increase in the delay can be
observed. The same behaviour can be observed with the other sensing hopping periods
with an added initial plateau due to the sensing hopping period being higher or equal to
the beaconing period, ensuring reception of the beacon.

The sensing period should thus be set around 10ms and the beaconing period set as
low as possible (based on the utilisation of the band) to achieve the lowest discovery
delay possible.

To be able to decode a beacon, the sensing radio must get the entire transmission
both in the time and the frequency domain. If a beacon is sent at a central frequency
f (in MHz) and uses b Mhz of bandwidth to be sent, then the sensing radio with a
bandwidth sbw and a central frequency f2 can receive it if the inequality 4.4 is true.

63

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

Additionally, the sensing radio also has to be available on this frequency band during the
whole transmission.

f − sbw +
b

2
≤ f2 ≤ f + sbw −

b

2
(4.4)

This means that when the sensing radio uses a 25 MHz bandwidth and only one beacon
is sent at a time, the central frequency of both radios cannot be separated by more than
12.25 MHz in order to receive the transmission.

A CR may send more than one beacon at a time to increase the likeliness of being
found by surrounding CRs. When the beacon count is greater than 1, the beacons are
sent at both the lowest and highest frequency possible to maximise the probability of
being found. Beacons are then spread evenly in the band, as can be seen in the spectral
representation found in Figure 4.14. The blue colour represents the tunable band of a
CR while the yellow indicates its RF window. The red indicates the beacons it sends
while the numbers under them give an idea how our placement algorithm works when
increasing the number of beacons.

Figure 4.14: Spectral representation of where a cognitive radio sends its beacons when
having beacon count = 5.

In Figure 4.15, we evaluated the impact of the number of beacons sent by the first
node along with the sensing radio’s bandwidth on the average rendez-vous time. This
experiment was carried out with a beaconing hopping period (bp) of 10ms and with a
sensing hopping period (shp) of 10ms.

2 4 6 8 10
0

2

4

6

8

Beacon count

A
ve
ra
ge

re
n
d
ez
-v
ou

s
d
el
ay

(s
)

radio 5MHz
radio 12.5MHz
radio 25MHz
radio 50MHz

Figure 4.15: Influence of the number of beacon sent and the sensing radio’s bandwidth on
the average rendez-vous delay. shp = 10ms, bp = 10ms

64

4.4 PHY-layer signalling protocol

When both radios have the same bandwidth (25 MHz), increasing the beacon count
from one to two halves the average rendez-vous time. This is because the sensing radio
cannot receive both beacons at the same time which means the probability of hearing
one beacon was multiplied by two.

When the beacon count is increased to 3, the third beacon’s central frequency is half-
way between the first and last beacon (12.25 MHz). This means that if the sensing radio
is able to hear this third beacon, it is able to hear either one of the other beacon because
they are located at less than half the bandwidth of the sensing radio.

It is thus not necessary to increase the beacon count when the distance in MHz between
them is lower than the sensing radio’s bandwidth. In Figure 4.16, we evaluated the
impact of the sensing radio’s bandwidth on the rendez-vous delay. The experiment has
been repeated one million times per data point and we plotted the minimum, average
and maximum rendez-vous time.

0 10 20 30 40 50 60 70 80 90 100

10−2

10−1

100

101

102

Sensing radio’s bandwidth (MHz)

A
ve
ra
ge

re
n
d
ez
-v
ou

s
d
el
ay

(s
)

minimum
average

maximum

Figure 4.16: Variance of the rendez-vous time with shp = 10ms, bp = 10ms, bc = 2, 1
million iterations

We found out that the minimum rendez-vous time was always 5 ms, which is the delay
a CR should wait after switching to a band before emitting anything. The average delay
decreased from 5 seconds to 250 ms when increasing the sensing radio’s bandwidth from
4 to 100 MHz. Likewise, the maximum delay decreased from 106 seconds to 6 seconds
but had much more variance due to the limited amount of times the experience was run
(1 million times). It however follows the same trend as the average delay.

Hardware radios

Our proposed beaconing mechanism can also be used on hardware radios even if it
requires the nodes to agree on the modulation used for all the communications.

65

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

We decided to evaluate it on a simulated nRF24L01 [94], a highly configurable cheap
and power-efficient ubiquitous radio operating in the 2.4GHz band. When configured for
using 1 MHz channels, it can operate on 115 channels ranging from 2.4 to 2.515 GHz.

Our simulator used for the software radios has been extended to better suit the char-
acteristics of the nRF24L01 as the central frequency had to be an integer in MHz. We
then used the same scenario as we did for evaluating software radios. This scenario only
involves two cognitive radio nodes as it is the worst case scenario. Indeed, adding more
nodes would result in more beacons sent per second which would increase the likeliness
of being discovered no matter where the CRs are emitting. The first node has a hopping
pattern period of 1s and advertises two bands that are available respectively in [0.0, 0.4]
and [0.5, 0.9]. The two bands are selected randomly at the beginning of the experiment.
The node will send a beacon 5ms after switching to a band and at a user-defined period
after that. The second node performs only sensing. It randomly hops from one channel
to another with a user-defined hopping period. The experiment finishes when the sensing
node is able to hear the entirety of a beacon sent by the first node. The result of this
experiment is available in Figure 4.17.

100 101 102 103 104
100

101

102

103

104

Beaconing period (ms)

A
ve
ra
ge

re
n
d
ez
-v
ou

s
d
el
ay

(s
)

shp = 1ms
shp = 10ms
shp = 0.1s
shp = 1s
shp = 10s

Figure 4.17: Influence of the beaconing and sensing-hopping period on the average rendez-
vous delay on a hardware radio.

The results of this experiment are almost exactly similar to the ones we got simulating a
software radio. The only difference is that the hardware radio got an average rendez-vous
time sightly lower than the one found with software radios. This is because the nRF24L01
only has 115 central frequency possible while the software radio had less “channels” (108)
but the central frequency could be set anywhere in its band.

To evaluate the rendez-vous delay’s variance, we plotted in Figure 4.18 the minimum,
average and maximum rendez-vous delay depending on the beaconing period. We can

66

4.4 PHY-layer signalling protocol

see that the maximum delay is about ten times higher than the average delay whatever
the beaconing period.

100 101 102 103 104

10−2

10−1

100

101

102

103

Beaconing period (ms)

A
ve
ra
ge

re
n
d
ez
-v
ou

s
d
el
ay

(s
)

minimum
average

maximum

Figure 4.18: Variance of the rendez-vous time with shp = 10ms, 100000 iterations

As hardware radios can only send one packet at a time, we cannot send more than
one beacon at a time. Likewise, hardware radios cannot demodulate transmissions whose
central frequency is different from the radio’s. The evaluation of the impact of the sensing
radio’s bandwidth on the average rendez-vous time is thus not applicable to hardware
radios.

4.4.7 Conclusion

We evaluated the performance of our beaconing mechanism on both hardware and
software radios. In both cases, a radio was able to find the other node in less than 2
seconds in the hardware radio case and less than a second for the software radio case.
However, software radio’s abilities to emit and receive more than one communication at
a time can dramatically reduce the rendez-vous time while also allowing easier updates
in the PHY-layer specifications for the beacon.

A hybrid network composed of both hardware and software cognitive radios is thus
possible even if hardware radios are often limited to a narrower RF band.

We compared our solution to the enhanced jump-stay algorithm [3] which has a one-
time rendez-vous cost like our proposition. We set the timeslot size for this algorithm
to 20 ms, as recommended in an earlier version of the paper. We found out that for the
same use case presented earlier, the average rendez-vous time would be 3.3 seconds while
the maximum rendez-vous time would be 8.72 seconds.

We also compared our solution to [4] that provides a per-frame rendez-vous mechanism.
We set the sensing time per channel to 1 ms as it takes some time for the radio to change

67

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

frequency and a few hundred of microseconds to perform energy sensing. We found out
that it would take an average of 54 ms to rendez-vous while the maximum rendez-vous
time would be 108 ms.

In Figure 4.19, we show the differences in rendez-vous of our proposition when using
hardware and software radios compared to [4] and [3]. Our proposition is respectively 2.4
and 5 times faster in average than the other one-time synchronisation cost algorithm [3]
for hardware software and software radios while also being able to communicate. Our
maximum time to rendez-vous is however up to 2 times as long as [3]. Both our proposi-
tion and [3] are slower than [4] which however does not allow multiple transmission to be
emitted or received by a CR at the same time and has a frame latency of at least 54 ms
which may not be suitable for some application. It is however well suited for low-traffic
networks where our solution would use the spectrum mostly for the beaconing.

0 2 4 6 8 10 12 14 16

DMPJS10 [4]

LLCL13 [3]
SW radios

HW radios

Time to Rendez-Vous (s)

Average TTR MTTR

Lower is better

Figure 4.19: Comparing our proposition to [3] and [4] when using a sensing hopping period
and a beaconing period of 10 ms, and software (25 MHz) and hardware radios.

Future work involve introducing a shortened version of the beacon that would be sent
when the beacon has not changed for some time. This short beacon would only contain
the current position in the cycle and the relative time since the beacon last changed (in
seconds). This would be sufficient for nodes to keep the time synchronisation. If a new
node gets added, it can request the full version of the beacon using the mechanism we
already introduced.

4.5 MAC-layer signalling protocol

The role of our MAC-layer signalling protocol is to provide a handshake mechanism
that allows unicast communication by selecting the PHY-layer parameters that should
be used to transmit a frame.

Contrarily to the PHY-layer signalling protocol which advertises the generally-available
frequency bands, the MAC-layer signalling protocol selects a frequency band that is
available at the time of transmission and picks a modulation that is compatible with
the channel fading and the time available before one of the two nodes jumps to another
frequency band. Our proposition is based on the “Willing To Send” (WTS), “Ready To
Receive” (RTR) and “Ready To Send” (RTS) control messages, shown in Figure 4.20.

68

4.5 MAC-layer signalling protocol

Figure 4.20: Overview of the MAC signalling protocol

In this figure, we can see what happens when node A wants to send a frame to node
B. Before sending the data frame, it first sends a WTS frame to tell node B it wants to
send a relatively large message. The WTS frame also contains the list of bands available
and the possible modulations. Node B selects a band and a modulation suitable for
the transmission before sending a RTR frame containing this information. The RTR
frame is re-emitted by node A but renamed RTS. Thanks to this signalling protocol,
nodes A and B selected the most appropriate bands and the fastest modulation possible
for the transmission. Upon receiving a WTS, RTR or RTS frame, surrounding nodes
should refrain from communicating in the referenced bands until their expiration time.
This effectively allows nodes A and B to allocate spectrum and reduce the chances of
collisions due to the hidden-node problem.

4.5.1 The WTS, RTR and RTS frames

The “Willing To Send” (WTS) frame allows a node to initiate the spectrum allocation
process along with selecting the most appropriate modulation to use as little spectrum
as possible. The following example is a textual representation of a WTS frame:

<WTS_frame>{ src=23, dst=12, data_len = 589,

[{band1}, {band2}, {band3}]

[{modulation1}, {modulation2}]

deadline=152ms, expires=20ms, tx_pwr=20dBm

}

In this example, the WTS frame indicates that node 23 wants to send 589 bytes to
node 12. The transmission can happen in any sub-band of band 1, 2 or 3 and should use
modulation1 or modulation2. A band is composed of a central frequency, a bandwidth
and the maximum transmission power that can be used without interfering with any
neighbouring primary user. A modulation is composed of its type (BPSK, QAM16, ...)
and the maximal symbol rate that can be sent. The receiver has 152 ms to receive
the message, starting from the moment the WTS frame got emitted. After this point,
the emitter will jump to another frequency band. Every other node receiving this WTS
frame should refrain from emitting or accepting new transmissions in these frequency
bands, during at least 20ms or until a follow-up RTR or RTS frame is received. This
parameter should be set according to the maximum time node 12 is supposed to take
before answering back to node 23. This way, if node 23 is not able to decode this
transmission, the lock on the frequency band can be lifted earlier than 152ms.

69

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

The WTS frame is sent simultaneously on bands 1, 2 and 3 with a transmission power
of 20dBm which will allow node 12 to assess the fading found at every frequency band
and request the wanted TX power from node 23 in order to have a sufficient SNR to
reach the fastest modulation possible.

Upon reception of the WTS frame, node 12 uses the content of the Radio Event Table
defined in 4.3.3 and shown in Figure 4.5 in order to select the best candidate bands that
intersect with the available bands found at node 23 and that have not been reserved by
another node’s WTS, CTS or RTS frame. Based on the fading found on the selected
band (5dBm - received power before amplification) and the maximum emission power
of node 23 for each selected band, node 12 selects the bands with the highest SNRs.
Node 12 then selects the modulation (type and symbol rate) which: (i) is compatible
with its capabilities and the transmitter’s, (ii) fits in the frequency band selected, (iii)
works with the expected SNR and (iv) allows transmitting the 589 bytes fast-enough to
meet the deadline. If a solution that meets all the criteria is found, then node 12 can
emit on the selected band the following RTR frame that contains the PHY parameters
(selected band, modulation type, symbol rate and transmission power) node 23 should
use to transmit its frame. Nodes receiving this frame can now cancel all the reservation
on all the frequency bands selected by the previous WTS frame and only lock the band
found in the RTR frame for the next 24ms. This delay is the expected maximum time it
will take for the emitting node to handle the RTR frame, emit the RTS frame and send
the data frame at the expected data rate.

<RTR_frame>{ src=12, dst=23, data_len = 589,

{band}, {modulation}, tx_pwr=15dBm,

expires=24ms

}

When receiving this RTR frame, node 23 should immediately emit the following RTS
frame on the selected band containing the frequency band that will be used for the
transmission to node 12 along with the time during which the surrounding nodes should
refrain from using it. The RTS frame takes precedence onto the previous RTR and WTS
frames. The expiration time is lower than the RTR frame because it takes time for the
samples to reach the software that will demodulate the signal and decode the frame.

<RTS_frame>{ src=23, dst=12, {band},

tx_pwr=15dBm, expires=19ms

}

In this frame, it is said that node 23 now has 19ms to send the data using the PHY-
layer parameters that were defined in the RTR frame. The 4ms difference with the RTR’s
expiration time is an example of the processing time needed for the samples to reach the
signal processing software, being demodulated, decoded and sent to the network stack.
Vice versa for the emission of the RTS frame.

The WTS/RTR/RTS frames’ binary representation is shown in Figure 4.21. The
minimum size of a WTS frame is 38 bytes, with an additional 8 bytes per added bands

70

4.5 MAC-layer signalling protocol

and 4 bytes per added modulation. The size of the RTR and RTS frames is respectively
34 and 30 bytes.

Figure 4.21: Format of the MAC frames (WTS, RTR then RTS)

Our control frame are thus about twice as long as IEEE 802.11’s RTS/CTS frames
which are respectively 20 and 14 bytes long. They can however make up for their increased
size by allowing multiple transmissions to happen on adjacent bands.

4.5.2 Selecting the modulation of the control frames

The WTS, RTR and RTS frames should use a modulation that supports poor SNRs
to increase the chance of reception by the destination and the surrounding CRs which
would in turn lower the chances of a collision during the transmission.

Modulations supporting a poor SNR are usually slow and, at a constant bitrate, use
more frequency spectrum because they need more symbols per second than a faster
modulation. Figure 4.22 shows the impact of the modulation and the bitrate on the
transmission time of a WTS frame and on the spectrum usage. The transmission time
does not take into account the preamble or any error-correcting code such as FEC which
would both increase the emission time.

From Figure 4.22, we can see that the emission time of the control frames is non-trivial.
Frames should thus be relatively large to make it worth it to perform this bandwidth
allocation. For streaming applications, the allocation may be renewed continuously by
periodically re-sending the RTS and RTR frames on both side of the band used for
communicating. This would also result in a higher throughput as the communication
would never be interrupted. A CR may reclaim the band by sending a WTS including
the band that it is willing to use.

4.5.3 Discussion

Our MAC-layer signalling protocol is, in its nature, an enhancement of the IEEE 802.11
RTS/CTS handshake. It thus inherits its characteristics among which is to partially

71

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

0.5 1 1.5 2

0.5

1

1.5

Bitrate (MBit/s)

T
im

e
to

se
n
d
a
W

T
S
fr
am

e
(m

s)

Transmission time

0.5

1

1.5

2

2.5

S
p
ec
tr
u
m

u
sa
ge

(M
H
z)Spectrum usage

(a) BPSK modulation

0.5 1 1.5 2

0.5

1

1.5

Bitrate (MBit/s)

T
im

e
to

se
n
d
a
W

T
S
fr
am

e
(m

s)

Transmission time

0.2

0.4

0.6

0.8

1

1.2

S
p
ec
tr
u
m

u
sa
ge

(M
H
z)Spectrum usage

(b) QPSK modulation

Figure 4.22: Impact of the bitrate on the transmission time of a WTS frame of 50 bytes
using a BPSK modulation (4.22a) and a QPSK modulation (4.22b).

prevent the hidden node problem. However, since we are using this mechanism in a
CRN environment, nodes may hop in and out of the frequency band selected during the
transmission of a frame. If a node hops in the frequency band after the RTR frame is
sent, is far-enough from the emitter not to be able to sense the transmission and yet is
close enough to interfere with the receiver in case it decides to send data on this band,
it may create a collision. One way to mitigate this problem is to have a relatively low
hopping frequency compared to the time it takes to send a frame and to mandate that
nodes should be mute for a few ms when hopping on a new band.

Aside from the noted limitation and the increased size of the frames, our proposition
should behave in the exact same way as the IEEE 802.11 RTS/CTS handshake and the
same limitations and mitigations apply. This means that when the risks of collisions are
low or when the message to be sent is small, this mechanism can be bypassed as it would
only increase latency and decreases throughput needlessly.

4.6 Conclusion

In this chapter, we proposed a sensing technique for detecting transmissions from pri-
mary and secondary users in order to identify available frequency bands. An efficient
software and hardware architecture was then proposed to implement this sensing tech-
nique.

We then proposed a discovery mechanism that allows nodes to temporally and spatially
synchronise to enable communication among CRs. This mechanism is a clear improve-
ment over the state of the art because it allows guaranteeing availability on a number
of bands while allowing nodes to perform sensing on other bands or saving power by
powering-off their radios. In our simulations, the synchronisation could happen in less
than 15 seconds and as little as 660 ms in average for realistic scenarios that do not
require any prior knowledge of the PHY parameters, as demonstrated in Appendix F.

72

4.6 Conclusion

Our MAC-layer signalling protocol proposition brings advanced cognitive behaviours
to frame transmissions by allowing to pick the least-crowded frequency band, the weakest
transmission power and the fastest modulation possible to reach the destination while
creating as little interference as possible on surrounding primary or secondary users.

With such a signalling protocol, it becomes possible to allocate spectrum according to
the actual need of applications. For instance, it is possible to allocate a narrow band
communication streaming data constantly at a low latency which would be very suitable
for VoIP applications while also using intermittent wide-band communications for web-
browsing or file transfer applications. It thus becomes possible for an application to
use both the spectrum and the modulation that is the most suitable for the type of the
current communication without needing several radios.

These contributions allow for a more efficient RF spectrum sharing among cognitive
nodes to create a cognitive network resilient to interference that can operate along-
side non-collaborative nodes but also allocate the most suitable modulation possible for
applications. An example of usage of these contributions can be found in Chapter 7.

Future work will focus on designing a MAC layer that can use our propositions to adapt
to any kind of traffic and QoS needs and use the least amount of spectrum possible
while still being able to share it with surrounding nodes. This is especially necessary
for continuous communications and multicast communications. The possibility of using
a cross-layer approach to improve the performance will also be studied by using our
MAC signalling protocol less often or for bigger frames in bands where the probability
of collisions is very low.

73

4. PHY/MAC: EFFICIENT SPECTRUM SHARING

74

Chapter 5

Hardware: Defining an autonomic
low-power node

Contents

5.1 Introduction . 76

5.2 General introduction to power management 77

5.2.1 Voltage regulation . 77

5.2.2 Clocks . 79

5.2.3 Transistors . 79

5.2.4 Storing data : Registers, DRAM, SRAM and Flash 81

5.2.5 Temperature management . 84

5.2.6 Power reading . 84

5.3 Power management features of modern processors 84

5.3.1 Accelerators . 84

5.3.2 Introspection . 85

5.3.3 Clock and Power gating . 87

5.3.4 Dynamic Voltage/Frequency Scaling 89

5.3.5 Thermal & power management 89

5.3.6 Power Management Unit (PMU) 94

5.3.7 The Boost feature . 95

5.4 Power and performance analysis in modern NVIDIA GPUs . 97

5.5 Analysing the reclocking policy of a Kepler NVIDIA GPU . 102

5.6 Can modern processors have autonomic power management? 105

5.7 Conclusion . 107

75

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

5.1 Introduction

Up until now, we provided contributions to many layers of the OSI stack. We we have
however mostly ignored the power cost of computing. This was a reasonable assump-
tion for sensor nodes since their barely use any of it. However, cognitive radio nodes
are entirely reliant on processing power and they thus require potentially-power-hungry
hardware.

Historically, processors manufacturers were aiming at increasing performance as it was
the usual metric used by consumers to select what to buy. However with the rise of laptops
and smartphones, consumers have started to prefer higher battery-life, slimmer, quieter,
and cooler devices. This led processor manufacturers to not only take performance into
account, but also performance-per-Watt. Higher performance-per-Watt means lower heat
dissipation for the same amount of computing power, which in turn allows shrinking the
heatsink/fan that keep the processor cool. This results in slimmer and/or quieter devices.
Decreasing power usage is also a major concern for datacenters and supercomputers, as
they already consumed 1.5% of the USA’s electricity production in 2007 [21].

As power management (PM) is a non-functional/auxiliary feature, it is usually non-
standard, poorly documented and/or kept secret. As some PM features require the
intervention of the operating system (OS), a driver is often needed to obtain the best
performance-per-Watt.

Designing power-aware computers has been a hot topic for many years in the research
community but the absence of in-depth documentation and closed-source drivers sets
back research as it severely limits experimentation and requires reverse engineering the
undocumented features which may not even be advertised, then implementing a driver for
the hardware. This lack of documentation is most present in the GPU world, especially
with the company called NVIDIA which has been publicly shamed for that reason by
Linus Torvalds [95], creator of Linux.

We have worked for more than 4 years to build up technical knowledge on power man-
agement with students, engineers and researchers working on the Nouveau project [96]
which aims at creating an Open Source driver for (almost) all NVIDIA GPUs. This work
involved reverse engineering NVIDIA GPUs, reading patents and source codes, and dis-
cussing with engineers from AMD, Intel and NVIDIA. This driver, primarily developed
through reverse engineering, has been the default NVIDIA driver in the Linux kernel
since December 2009. Nouveau is developed collaboratively and most of its developers
are hobbists, students, researchers or engineers. As of today, 3 engineers are paid to
work on Nouveau, 2 of which are paid by Linux distributions. The other one joined in
early 2014 and is paid by NVIDIA to add support for their System-on-Chip (SoC) GPU
Tegra K1. Currently, the driver is able to accelerate 2D, 3D and video decoding but
its inability to change the frequency of the clocks limits its performance. Along with
other members of the community, we have been documenting power management and
improving it in the Nouveau driver on modern NVIDIA GPUs and hope to turn it into
a viable driver for Linux users and as well as a complete open source testbed for power

76

5.2 General introduction to power management

management researchers. Indeed, Nouveau and/or its reverse-engineered documentation,
found in envytools [97], has already been used by researchers to create a GPU task sched-
uler [98], allow the Operating System to use the GPU as an accelerator [99], to study
buffer migration techniques and their impact in [100], [101] and [102] or to implement
GPU virtualisation at the hypervisor level [103]. We also published power-related papers
on Nouveau [104][105][106][107] that will introduce in this chapter.

Because of all these power management capabilities, we think it is possible that mod-
ern processors could already be in line with IBM’s vision of autonomic computing, as
proposed in 2003 [65].

In Section 5.2, we first give a general introduction to transistors, data storage and the
electronic components behind every modern processor. We then introduce in Section 5.3
the power management features found in modern processors. Most of these features have
been studied through reverse engineering NVIDIA GPUs because no hardware manufac-
turer documents them. An analysis of performance and power consumption in a desktop
PC environment is then presented in Section 5.4. We then evaluate in Section 5.6 how
modern processors fit in IBM’s autonomic computing vision. Section 5.5 studies the
power and performance policy used by NVIDIA on its Kepler GPU family. We conclude
in Section 5.7.

5.2 General introduction to power management

This section is meant to provide the reader with information that is important to
understand the following sections.

5.2.1 Voltage regulation

In wireless networks, the energy source is likely to be a non-rechargeable battery for
sensor nodes because it is the cheapest source of electricity while providing the highest
energy density and the lowest self-discharge current. These batteries reduce the size of the
sensor node and are thus particularly fit for sensors that do not have an energy-harvesting
device such as a photovoltaic panel and should be operational for 10+ years.

Rechargeable batteries for nodes such as a smartphone, laptop or weather monitoring
stations are characterised by a higher self-discharge current and a limited discharge cur-
rent if the battery is to last. Regulating the power consumption of a wireless node can
thus be needed in order to avoid stressing the battery.

A modern desktop GPU draws its power from the PCIe port or PCIe connectors (6 or
8 pins). The PCIe port and 6-pin PCIe connectors can each source up to 75W while the
8-pin PCIe connector can source up to 150W.

These power sources all provide voltages that are higher than the operating voltage
of the unit they power. A DC-DC voltage conversion is done using a voltage regulator

77

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

that transforms the input power voltage to the operating voltage of the unit. The out-
put voltage can often be adjusted dynamically using binary output pins or an I2C bus.
Figure 5.1 illustrates a simple view of the power subsystem of a GPU.

Chipset

Voltage

ControllerPCIe Port

6 pins

8 pins

I²C

VID (/5)

Power

75W

75W

150W
GPIOs

I²C adapter

PCIe power supply connected

IN
OUT

Therm Shutdown

Figure 5.1: Overview of the energy sources of a discrete NVIDIA GPU

The voltage regulator should balance the load across multiple power inputs but must
also limit the power draw of each power input to their maximum power rating. If the
total power draw gets close to the sum of the maximum power rating of each power input,
the voltage regulator should send an interrupt to the processor. If no drastic action is
taken by the processor, it should cut down the power in order to protect itself and the
energy source.

Voltage regulators are expected to keep their output voltage constant, even when
the load varies. They are however not perfect and can only react to a limited dI/dt
without the voltage dropping or increasing too much. This is of great concern for power
amplification in radios because the power output is highly variable and needs to be highly
accurate for amplitude-based modulations such as QAM. For this reason, many power
amplifiers are usually connected straight to the battery in order to increase the Signal-
to-Noise Ratio (SNR) at the expense of increased power consumption and dissipation.
Envelope-tracking power amplifiers are specifically designed for RF radios in order to
keep a high linearity in the amplification while providing just enough voltage for the
amplifier to operate [58]. This greatly improves the efficiency at low amplification. The
power savings achievable using Envelope-Tracking can be seen in Figure 5.2.

Figure 5.2: Power amplifier supply voltage for fixed voltage, average power tracking and
Envelope Tracking. Source [5].

78

5.2 General introduction to power management

In [60], the authors claim to have achieved efficiency improvements ranging from 11.3%
to 40.7% depending on the technology and the output power.

A bigger capacitor could be used to keep the voltage constant under highly-variable
loads. It would however slow-down the voltage changes and would also cost money
because of its unit price and because it would increase the PCB’s size. There is thus a
trade-off between voltage stability, how variable a load can be and how fast voltage can
be changed to the desired level.

5.2.2 Clocks

Processors are synchronous machines that follow one or multiple clocks. Modulating
the clock’s frequency on the fly allows to dynamically change the performance of a pro-
cessor. The source clock is usually an on-board crystal of a few MHz. The frequency of
this clock can then be increased by using a Phase-Locked Loop (PLL). A PLL takes the
input frequency Fin and outputs the frequency Fout. The relation between Fin and Fout

in the simplest PLL is detailed in equ. 5.1. The parameters N and M are integers and
have a limited range. This means that not all output frequencies are achievable.

Fout = Fin ∗
N

M
(5.1)

Another common component involved in the clock tree is the multiplexer. A multi-
plexer takes as an input several signals and only outputs one of them. The selection of
the output signal is controllable electronically and is exposed by a register to the driver.
Figure 5.3 is an example of a 4-inputs multiplexer with 2 select-lines to be able to address
every input.

MUX

Data Inputs

Output

Selectors

Figure 5.3: Example of a 4-data-input multiplexer

It would be simplistic to think that modern processors use a single clock. For instance, a
modern GPU has multiple engines running asynchronously which are clocked by different
clock domains. We found out through reverse engineering that there are up to 13 clock
domains on NVIDIA’s Fermi [108] chipset family. An example of a clock tree for a clock
domain can be seen in Figure 5.4.

5.2.3 Transistors

Modern processors are composed of CMOS (Complementary Metal Oxide Semicon-
ductor) transistors. They are characterised with a very-fast switching time, a low power
consumption compared to other technologies and a wide range of operating voltage.

79

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

MUX_0

DOM6SPLL NVPLL

MUX_1

P_DIVIDER

MUX_2

NVCLK

HOST_REFCRYSTAL

RPLL

Figure 5.4: Overview of the clock tree for nvclk (core clock) on an NVIDIA nv84 GPU

A P-channel MOS transistor is a simple electronic switch with three poles that lets the
current flow from the Source pole to the Drain pole when the voltage applied to the Gate
is higher than the threshold voltage Vth. A CMOS inverting gate is shown in Figure 5.5.

G
S

D

D

S
G

Figure 5.5: Schematic of a CMOS inverter gate

There is a known relation between the voltage, the frequency of the clock and the final
power consumption for CMOS transistors [109] as shown by equ. 5.2, 5.3 and 5.4.

P = Pdynamic + Pstatic (5.2)

Pstatic ∝ V ∗ Istatic (5.3)

Pdynamic = CfV 2 (5.4)

P is the final power consumption in Watts of the transistor and results from both its
dynamic (Pdynamic) and its static (Pstatic) power consumption.

80

5.2 General introduction to power management

The dynamic power consumption comes from the energy cost of charging and discharg-
ing the capacitance C switched by the transistor (which decreases with the transistor
size). It is also linear with the frequency f at which the transistor is switched and the
voltage V at which the transistor is powered at [6].

The static power consumption is a constant leakage, even when the transistor is in the
off state. This is analog to a leaky faucet. Istatic is dependent on the voltage and the
temperature.

The most efficient way to drive a CMOS transistor from a dynamic power consumption
perspective is to supply it with the lowest possible voltage. However, if set too low,
the transistor will not be fast enough at switching the voltage to the right side of the
decision threshold (Vth) of the gate of the next transistor. The relation between voltage
and frequency at which the transistor is switched depends on equ. 5.5.

fmax ∝ (V − Vth)
2/V (5.5)

Reducing the voltage requires lowering Vth if fmax should be affected. As the static
power consumption is inversely proportional to the exponential of the Vth [110], this static
power consumption could become non-negligible or completely negate the dynamic power
consumption savings of reducing the voltage. Future processors are expected to have
different voltage thresholds depending on the performance needed from the transistor.

The distribution of power consumption between the dynamic and the static power
consumption is very dependent on the etching process. Static power consumption used
to be negligible [6] but it became an increasing problem when shrinking the transistors.
Figure 5.6 illustrates the trends in static and dynamic power dissipation as foreseen by
the International Technology Roadmap for Semiconductors in 2003. However, this figure
does not take into account the recent progress in etching techniques such as Intel’s 3D
tri-gate or high-k metal oxides improvements [110] which drastically reduced static power
consumption.

As a summary, for any given etching process, it is not possible to have both the best
power efficiency and the highest performance. It can also be more power efficient to lower
the clock speed and have more transistors than having a higher frequency processor. This
explains why the frequency of our processors is not increasing as fast as it used to but
we instead see an increase in the number of cores.

5.2.4 Storing data : Registers, DRAM, SRAM and Flash

The simplest and easiest way of storing data is to use two NOR gates as shown in
Figure 5.7. This circuit is called a RS flip flop and is able to hold one bit of data,
exposed by the Q output when both the R and S inputs are not set. Setting R will set
Q while setting S will clear Q. The Q output will otherwise remain stable until power is
lost.

81

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

Figure 5.6: Total chip dynamic and static power dissipation trends based on the Interna-
tional Technology Roadmap for Semiconductors [6]

Q

Q

R

S

Figure 5.7: Implementation of a RS flip flop using two NOR gates

RS flip flops are difficult to use because they require two different inputs instead of a
single data input. It is possible to convert an RS flip flop to a D-type flip flop by adding
3 additional NOR gates. As a CMOS NOR gate requires 4 transistors, this means a
D-type flip-flop can be made using 20 transistors. As NOR gates are made using the
CMOS technology, we can use equ. 5.2, 5.3 and 5.4 to model the power consumption
of the D-type flip flop. Depending on the transistors’ etching process, its static power
consumption can be negligible or quite high and its maximum speed is proportional to
equ. 5.5.

Processor’s registers require speed and there are relatively few of them. They thus are
usually made of D-type flip flops. However, as using 20 transistors to store one bit takes
a lot of silicon space on the processor’s die, this is not suitable for storing a large amount
of data.

Data can be stored at a very high density using Dynamic Random-Access Memory
(DRAM). DRAM only requires one transistor and a capacitor to store one bit as a voltage
in the capacitor. Setting the bit requires charging the capacitor while clearing the bit
requires discharging it. As the capacitor leaks its charges over time, it has to be refreshed
periodically. It also has to be refreshed after being read because reading the voltage drains
its charges through the associated transistor. The static power consumption of a DRAM
bit comes from the leakage of the capacitor while the dynamic power consumption comes
from charging and discharging the capacitor when the bit is read or written. The power
consumption can be modelled accurately, as seen in [111]. To save even more space,

82

5.2 General introduction to power management

eDRAM [112] uses a single transistor to store one bit by exploiting the transistor gate’s
capacity instead of using an external capacitor. They must however be refreshed more
often.

Figure 5.8: Storing one bit using DRAM

DRAM is good for storage density but its performance is limited by the time it takes
to charge the capacitor. A middle-ground for storage density and performance exists,
it is called Static Random Memory Access (SRAM). A power efficient SRAM uses 6
transistors to store one bit. Like the D-type flip flop, it has non-destructive reads but it
requires a dedicated piece of circuitry to be readable which increases the output latency
compared to a D-flip flop. SRAM is often used for implementing caches as they are
faster than DRAM and use up less space than D-type flip flops. The SRAM’s power
consumption cannot directly be derived from equ. 5.2, 5.3 and 5.4 because not all the
transistors are the same. Different power consumption models have been proposed and
tested by [113]. A SRAM cell, shown in Figure 5.9, is however generally more efficient
than a DRAM cell.

VDD

M6
M5

M2 M4

M3M1

WL

BLBL

Q
Q

Figure 5.9: Storing one bit using SRAM

D-type flip flops, SRAM and DRAM cells are all volatile data storage mediums. This
means that cutting their power source results in a loss of the stored data. Non-volatile
data storage techniques such as Flash generally have a higher dynamic power consump-
tion than volatile data storage mediums but can be very efficient for low-performance
computers because they can be powered-off when not actively in use. They are however
slower for reading and writing operations. As the cells have a maximum number of writes
before losing their property, they also require a complex controller to spread the wear
across the whole memory cells [114].

83

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

5.2.5 Temperature management

Modern processors are prone to overheating. In order to regulate their temperature,
a temperature probe is usually inserted inside their package. The processor can then
vary the average power received by a fan dedicated to cooling the processor, using Pulse-
Width Modulation (PWM). However, not all devices have fans. In this case, the processor
should take actions to lower its power consumption. Possible actions will be detailled in
the following section.

Not all parts of a computer or wireless nodes are covered with temperature sensors.
Maximum average power consumption should then be defined for heating-prone compo-
nents such as the voltage regulator in order to preserve its properties. The processor
should then make sure it does not draw more power than the limit found where the VR
heats more than it is able to dissipate.

5.2.6 Power reading

Estimating the power consumption can be done by measuring the voltage drop across
a shunt resistor mounted in series with the chip’s power line. This voltage drop is
linear with the current flowing through the power line with a factor of Rshunt. The
instantaneous power consumption of the chip is then equal to the voltage delivered by
the voltage controller multiplied by the measured current, as per Ohm’s law. This method
is explained in Figure 5.10.

Shunt resistor

R

I

UR = R * I

ADC

Chipset
Voltage

Controller
Vdd

Power = Vdd * I

 = Vdd * UR / R
UR

Figure 5.10: Measuring the power consumption of a chip

This solution can however be expensive as it requires dedicated hardware on the elec-
tronic board of the node and a communication channel between the Analog-to-Digital
Converter (ADC) and the chip. The cost of the solution will depend on how often we
want to get a power estimation as fast ADCs are expensive.

5.3 Power management features of modern processors

5.3.1 Accelerators

An accelerator is a piece of circuitry inside or outside processors designed to carry out
a more-or-less specific task.

Accelerators are now commonplace from the ultra-low power world to desktop com-
puters. For instance, Texas Instrument’s MSP430 [115] is an ultra-low power processor

84

5.3 Power management features of modern processors

that has CRC32, AES-256, LCD controller and a true random number generation ac-
celerators. These operations would use a lot of processing power if they were executed
by the central processor itself. Similarly, modern Intel CPUs have cryptography-related,
2D, 3D and video decoding/encoding accelerators in order to free the main processor and
increase the power efficiency.

In the System-On-Chip (SoC) world which powers most of the smartphones and tablets,
the 2G/3G/4G LTE modems have traditionally been implemented using fixed-functions.
However, as the complexity grew up, the lack of coordination between all the transistor
blocks and redundant functions made these fixed functions expensive in terms of number
of transistors (die size) and power consumption. NVIDIA introduced a software defined
radio in their discrete NVIDIA i500 modem and their Tegra 4i SoC [116]. This allowed
them to shrink their die size to 40% of their previous generation modem while lowering
the modem’s power consumption thanks to a processor made for baseband processing and
DVFS techniques which are difficult to implement in fixed-function processors. Finally,
software defined radios can be updated by upgrading a firmware which makes it possible
to add new protocols on already-existing devices, lowering the adoption time of new
standards.

In the future, we may also expect processors to contain reconfigurable accelerators
based on a Field-Programmable Gate Array (FPGA). This would allow compute-heavy
applications to ship with an accelerator suited to increase performance and potentially
lower the power consumption of the processor. Such accelerator would have direct ac-
cess to the central memory and be easily programmed and configured through Memory-
Mapped Input/Outputs (MMIO), the standard for accessing peripherals and accelerators.

Although accelerators are not strictly power management features, using them can
yield a much lower power consumption and an increased performance because they are
designed specifically for the task.

5.3.2 Introspection

Sub-devices and low-level parameters

The first real autonomic feature for processors is to be aware of all its sub-devices
and hardware constraints. For instance, a system needs to know about temperature and
power probes in order to satisfy hardware constraints such as the maximum temperature
the processor is allowed to reach or the maximum power it can draw.

Ideally, all of the sub-devices would be connected to a bus supporting enumeration such
as USB [117] or PCI(e) [118][119] but this is not always the case and the operating system
will need to get a list of devices and their constraints. In desktop/laptop computers, the
BIOS or EFI firmware is responsible for abstracting away the platform and exposing
the hardware, mostly through ACPI [120]. Discrete graphic cards come with a video
BIOS (vbios) that contains different tables for temperature management, performance
levels, the list of sub-devices or scripts to initialise the GPU. In the embedded world, a

85

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

new standard emerged called “Device Tree” (DT) [121] that enables describing both the
hardware and the low-level parameters that should be set.

We found out through reverse engineering NVIDIA’s vbios that it contains multiple
power-management-related tables. The thermal table contains information such as how
to compute the temperature, the temperature thresholds for down-clocking or shutting
down the card, how often the fan speed should be adjusted and how (trip-point based
or linear with temperature). The vbios also contains the list of subdevices (I2C), the
power budget, what voltage should be set depending on the highest clock’s frequency,
the memory timings depending on the video RAM (VRAM) clock’s frequency but most
importantly, it contains the list of performance levels.

A performance level contains the list of clocks that need to be set for different per-
formance levels. There are up to 4 performance levels on NVIDIA cards which can
be switched dynamically using a Dynamic Voltage/Frequency Scaling algorithm, as de-
scribed in Subsection 5.3.4. Some clocks may be tweaked at run time through the boost
functionality, as explained in Subsection 5.3.7.

We developed and helped develop several tools to deal with NVIDIA vbioses:

• nvagetbios: Reading the vbios from the GPU;

• nvbios: Parse the vbios and display its tables in a textual form;

• nvafakebios: Upload a modified vbios not permanently to the GPU.

These tools can be found in envytools [97] and have been used to reverse engineer the
vbios tables previously introduced by altering the vbios and checking what difference it
made when running the NVIDIA’s proprietary driver. These tools also allowed us to
analyse and characterise the impact of different clock frequencies on power consumption
and performance in [104] and [105].

Run-time usage information

The (hardware) performance counters are blocks in modern microprocessors that count
low-level events such as the number of branches taken or the number of cache hits/misses
that happened while running a 3D or a GPGPU application. On NVIDIA’s Kepler family,
there are 108 different GPGPU-related monitorable events documented by NVIDIA.

Performance counters provide some insight into how the hardware executes its work-
load. In the case of NVIDIA GPUs, they are a powerful tool to analyse the bottlenecks
of a 3D or a GPGPU application. They can be accessed through NVIDIA PerfKit [122]
for 3D applications or through Cupti [123] for GPGPU applications.

The performance counters can also be used by the driver in order to dynamically adjust
the performance level based on the load usage of the processor. Some researchers also
proposed to use performance counters on GPUs as an indication of the power consumption
with an average accuracy of 4.7% [124].

86

5.3 Power management features of modern processors

We found out through reverse engineering that a counter receives hardware events
through internal connections encoded as a 1-bit value which we call signal. This signal
is sampled by a counter at the rate of clock of the engine that generated the event. The
event counter is incremented every time its corresponding signal is sampled at 1 while a
cycles counter is incremented at every clock cycle. This simplistic counter is represented
by figure 5.11.

Cycles

Events

Signal

Clock 4

1

Figure 5.11: Example of a simple performance counter

However, it is expensive to have a counter for every possible signal. The signals can
thus be multiplexed. In the case of NVIDIA GPUs, signals are grouped into domains
which are each clocked by one clock domain. There are up to 8 domains which hold 4
separate counters and up to 256 signals. Counters do not sample one signal, they sample
a macro signal. A macro signal is the aggregation of 4 signals which have been combined
using a function. An overview of this logic is represented by figure 5.12.

Cycles

Events

Macro

signal

Clock X

XTruth

Table

Multi-

plexer

S0

S1

S3

S4

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

Signals

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

/
256

/
256

/
256

/
256

/
256

Figure 5.12: Schematic view of a clock domain in NVIDIA’s PCOUNTER engine

The aggregation function allows to specify which combination of the 4 signals will
generate a 1 in the macro signal. The function is stored as a 16 bit number with each bit
representing a combination of the signals. With sx(t) being the state of selected signal
x (out of 4) at time t, the macro signal will be set to 1 if the bit s3(t) ∗ 2

3 + s2(t) ∗ 2
2 +

s1(t) ∗ 2
1 + s0(t) of the function number is set.

5.3.3 Clock and Power gating

In an effort to cut dynamic and static power consumption, processor manufacturers
respectively introduced clock gating and power gating.

87

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

Clock gating shuts down the clock of unused transistor blocks in order to stop needlessly
switching the state of useless transistors. This cuts the dynamic power consumption of
the clock-gated block entirely. This technique is usually done in hardware because it is
relatively easy for it to know when a block is needed or not. Software can usually disable
hardware-based clock gating or force it on a transistor block.

Power gating shuts down the power of a transistor block that is not in use in order
to prevent the transistors from leaking current. This shuts down the supply voltage of
the transistor which prevents any potential electron leak. The major drawback of this
technique is that power-gated registers and caches lose the data they store when power
gating, as seen in Subsection 5.2.4. It is thus necessary to save the context before shutting
down the power and reload it after putting power back up. Power-gating context-less
transistor blocks is however not a problem.

Both clock and power gating can save a lot of power without affecting performance.
However, they require adding some complexity to the clock tree and the processing part
in order for the processor to know when each transistor block is going to be needed. They
also make it difficult for the voltage regulator to provide a stable voltage because they
increase the dynamicity of the load, as explained in Subsection 5.2.1.

We found out that NVIDIA implements clock gating by having activity signals telling
a transistor block it needs to be active. The block will first receive power, then wait for
this signal to be active for a certain amount of clock cycles before activating the clock.
Likewise, the block will wait for a number of cycles before gating the clock then wait
more cycles before power gating the block. A partial view of what NVIDIA does for
clock gating can be seen in FIG. 5 of [125]. Such a mechanism reduces the ping-pong
effect by making sure the block really is needed or not before gating it or not. This is
very useful for the voltage regulator because it reduces the dynamicity of the load as
clock-gating and power-gating have a dramatic impact on the power consumption if the
block is large-enough.

We found out through reverse engineering that a minimum of 64 separate clock gating
blocks and 52 power gating blocks for the 2D/3D/GPGPUmain engine alone on a Geforce
GTX 660. The result of our reverse engineering of power and clock gating on NVIDIA
GPUs has been made available in envytools [97].

Intel defines different per-CPU idle states ranging from C1 to C6. The higher the
C-state, the lower the power consumption and the longer it will take to exit it and return
to an active state [126]. Going into a deeper C-state than needed hurts performance,
responsiveness and may even negate any power saving because of the time it will take
for the processor to exit this deep-sleep state. The C1 state merely clock gates the core’s
clock while the C6 state can power gate the entire core, interrupt controller and PCIe
bus included. Of course, if a resource is shared, it will not be gated unless all the cores
sharing it are done requiring it anymore.

88

5.3 Power management features of modern processors

We have not found a feature like the C-states in NVIDIA hardware but it can be
reimplemented by the host driver as needed.

5.3.4 Dynamic Voltage/Frequency Scaling

Clock and power gating are a great way of lowering the power consumption of a pro-
cessor when some of its blocks are inactive. This lowers the power consumption without
negatively impacting performance, at the expense of an increased hardware complexity
of the processor.

Another way of saving power is to dynamically change the frequency and the voltage
of transistor blocks, depending on how heavily-used they are. The reduced frequency
lowers the dynamic power consumption while the reduced voltage lowers both the static
and dynamic power consumption. This technique is called Dynamic Voltage/Frequency
Scaling (DVFS).

Since processors may have multiple cores or be composed of multiple accelerators, not
all of them may be used at the same level at any given time. Having them driven by
different clocks allows scaling the frequency of the engine dynamically in order to lower
the dynamic power consumption of the processor. Having separate clock domains for
each engine only requires one PLL per clock domain. It is however more difficult to have
a power domain associated to every clock domain as it would require a voltage regulator
per clock domain.

On Intel processors, all the cores share the same power domain and performance
level [127]. Indeed, although the operating system can specify the wanted performance
level for each core of the processor, they will all use the maximum performance requested
by all the non-idling cores. A more in-depth explanation of power management states
can be found on Intel’s website [126] and in [8]. Intel’s integrated GPU, however, has its
own power and clock domain.

Through reverse engineering, we found out NVIDIA are more complex than Intel pro-
cessors. Discrete GPUs only have up to 2 power domains, one for the chip and one for
the video RAM. The number of clock domains went up to 15 in the Fermi [128] family
with only 11 reclockable clock domains. This number went down a little in the Kepler
and Maxwell families to reach 9. The different clocks are changed all at once by switch-
ing between different performance levels depending on the needed performance. These
performance levels are found in the vbios, as explained in Subsection 5.3.2. The needed
performance is evaluated dynamically using the performance counters that we introduced
in 5.3.2. The reclocking policy of NVIDIA will be analysed in Section 5.4.

5.3.5 Thermal & power management

Processors have hardware limits on their maximum power consumption and highest
operational temperature. The temperature is usually regulated by using a fan to cool-
down the processor which is regulated using the internal an external temperature probe.

89

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

In the event the processor could not be cooled sufficiently by the fan or if it is exceeding
its power budget, it needs to react by lowering its power consumption. Lowering the
power consumption is usually done by reclocking but a full reclocking takes a long time
and usually requires the intervention of the Operating System.

Letting the operating system reclock the processor when getting close to overheating is
acceptable and the hardware can assist it by sending an interrupt when the temperature
reaches a threshold. However, in the case where the operating system is not doing its
job because it is locked up or because a driver is not loaded, the chip should be able to
regulate its temperature by itself without being forced to cut the power to the voltage
regulator’s level.

Rapidly lowering the power consumption in hardware

A simple way for the hardware to cut its power consumption is to slow-down the clock
of some engines. This will linearly affect the dynamic part of the power consumption,
as seen in equ. 5.4. However, it will not be as power efficient as a full reclocking of the
processor because the voltage is not changed, as explained in Subsection 5.2.3.

The frequency of a clock can be lowered easily without changing any PLL and can thus
be done without the intervention of the Operating System. The easiest solution is the
one taken by Intel, called T-state. A T-state, short for throttle state, gates the clock of
a core from 12 to 90% of the time in less than 10 different steps [126].

We found out through reverse engineering NVIDIA GPUs that another solution is
to divide the clock by a power of two which can be done very easily using counters.
It is then possible to generate any average clock frequency between the original clock
and the divided one by varying the time spent outputing one clock or the other. This
solution has a wider spectrum of achievable slow downs (6.25% to 100% of the original
speed) and is also much finer grained as it has 255 steps from the divided to the normal
clock. This technique was introduced by NVIDIA in 2006 and, for the lack of a better
name, we decided to call this frequency-modulation technique Frequency-Selection Ratio
Modulation (FSRM). FSRM can be implemented by using the output of a Pulse-Width
Modulator (PWM) to a one bit multiplexer. When the output of the PWM is high,
the original clock is being used while the divided clock is used when the output is low.
Any average clock frequency between the divided clock and the original clock is thus
achievable by varying the duty cycle of the PWM.

Figure 5.13 presents the expected frequency response of the above system along with
what has actually been measured through the performance counters when tested on
NVIDIA’s hardware implementation. The non-linearity of the output is likely explained
by the fact that no clock cycle should be shorter than the original clock’s which forces
to create a long cycle during the transition.

Intel T-States or NVIDIA’s FSRM can be used to rapidly lower the frequency of power-
hungry clock domains in reaction to hardware events such as overheating. Such event

90

5.3 Power management features of modern processors

0 50 100 150 200 250
0

1

2

3

4

·108

Obtained

Expected

FSRM’s PWM duty cycle (8 bit)

C
or
e
fr
eq
u
en

cy
(H

z)

Figure 5.13: Frequency of the core clock (@408MHz, 16-divider) when varying the FSRM

could happen if the temperature mechanism explained in 5.2.5 fails because the fan is
too old to spin properly or because the heat sink is clogged with dust.

We found out through reverse engineering that NVIDIA has dedicated hardware that
can generate such events when the temperature reaches a certain temperature thresholds.
Those temperature thresholds are in fact hysteresis windows to avoid the ping-pong effect
of temperature oscillating around this threshold. There are 3 to 6 hysteresis windows
depending on the hardware generation. Each window can specify the power-of-two divider
and the wanted FSRM value. When two events happen simultaneously, the event with
the highest priority will be used to configure the FSRM. This priority is fixed in silicon
on the Tesla family (introduced in 2006) but may have become a parameter on newer
generations. When no event is happening, the FSRM is deactivated to use the original
clock all the time. These windows can thus be put one after the other to gradually limit
the performance before shutting the power altogether at the voltage regulator’s level.

Power capping - Limiting the power consumption of the processor

Power capping is needed to make sure a processor stays in its power budget, which can
sometimes be advertised under the name Thermal Design Power (TDP).

The power consumption can be measured by reading the voltage drop across a small
resistor put in series with the power supply, as explained in Subsection 5.2.6. Another
solution is to compute the power consumption by having accurate hardware models for
both the static and the dynamic power consumption inside a block. It is then necessary
to keep track of which blocks are power gated and when blocks are active.

NVIDIA introduced in 2006 a power estimator that keeps track in hardware of which
blocks are active. The activity level of the block is then multiplied by a constant de-
pendent on the block’s size to account for the fact that blocks do not all have the same
amount of transistors. The multiplied activity levels are then summed and filtered to get
a reading in mW. An overview of NVIDIA’s power estimation technique can be seen in
Figure 5.14, extracted from their patent “Power estimation based on block activity” [7].

91

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

This patent also describes a communication channel between the power estimator and
the power supply, but we have not found any trace of it through reverse engineering. This
solution is interesting because it is able to compute the power consumption at 540 kHz
which allows for a very fast response to an over-current situation. It however does not
take into account the static power consumption nor the voltage. It is not a problem for
NVIDIA because they can set the block weights so as the reported wattage is accurate
when the board is using the highest performance level.

Figure 5.14: Overview of NVIDIA’s power estimation technique [7].

Independent researchers managed to have an average prediction error of 4.7% [124] for
the power consumption using performances counters to keep track of the active transistor
blocks. However, like NVIDIA’s solution, they do not track which blocks are power gated,
and they do not have a static power consumption model which makes their model invalid
in light-loads scenarios. Their model also does not work when no performance counter
cover one block. Finally, it uses CPU computing power to compute the current power
consumption, produces results at a much slower rate than NVIDIA’s power estimator and
does not cover all the transistor blocks at the same time because of the limited amount of
counters observable at the same time. It however proves that NVIDIA could do a good
job with its power estimator.

Intel released a very accurate hardware power consumption model in their Sandy Bridge
processor family [8] in 2011, as can be seen in Figure 5.15. It finally takes into account
the temperature, the voltage and the power-gated blocks in order to model power con-
sumption accurately [8].

We also found out through reverse engineering that NVIDIA also introduced a hard-
ware power-capping feature in 2006 using the FSRM and the power estimator we just
introduced. It is based on two hysteresis windows used to alter the ratio of time spent
using the fast or the divided clock. The inner window alters the ratio finely while the

92

5.3 Power management features of modern processors

Figure 5.15: Power meter: predicted and actual power of the CPU, processor graphics
and total package. The chart presents the actual measured power and the architectural
power meter reporting for the IA core, processor graphics and total package. The actual and
reported power correlate accurately. Source: [8]

outter one alters it coarsly to quickly react to big power consumption changes. An ex-
ample of NVIDIA’s hardware power capping can be seen in Figure 5.16 where the outer
window is set to [130W, 100W] while the inner window is set to [120W, 110W]. The outer
window will increase the FSRM value by 20 when the power is lower than 100W and will
decrease it by 30 when the power is above 130W. The inner window will increase the
FSRM value by 5 when the power is between 120 and 130W and will decrease it by 10
when the power is between 100 and 110W. The FSRM value is limited to the range [0,
255].

0 5 10 15 20 25

80

100

120

140

up 2

up 1

low 1

low 2

Refresh cycles

In
st
an

ta
n
eo
u
s
p
ow

er
(W

)

100

150

200

250

F
S
R
M
’s

P
W

M
d
u
ty

cy
cl
e
(8

b
it
)

Power
FSRM

Figure 5.16: Example of the power limiter in the dual window mode

This hardware power capping feature is updated at 540 kHz which makes it very
reactive to load changes. Unfortunately, NVIDIA never used this feature. This may soon
change with the introduction of the Tegra K1 which is a powerful SoC GPU based on the
Kepler family and which may be run fan-less and for which a hardware power model is less
expensive than an external power sensor. A reactive power-capping infrastructure could
also help NVIDIA squeeze a little more performance while still enforcing their power and

93

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

thermal budget. However, on discrete Kepler GPUs, NVIDIA uses an external power
sensor which gets polled at 10Hz in order to allow downclocking the card to stay in the
budget.

Intel introduced an equivalent technique known as Running Average Power Limit
(RAPL) in the Sandy Bridge family in 2011. They documented the configuration reg-
isters in their “Software Developer’s Manual” [129] but the implementation details are
not known as all these computations are done in an internal microprocessor dedicated
to power management instead of hard-wired logic like NVIDIA. This may explain why
Intel’s power estimation is able to deliver a reading roughly at 1kHz [130] instead of the
fixed 540 kHz for NVIDIA [106].

5.3.6 Power Management Unit (PMU)

Modern processors now have an embedded processor running a Real-Time Operating
System (RTOS) in charge of power management. It was introduced in order to reduce
the power management processing load of the operating system. This allows saving more
power because the RTOS can be more reactive than the main operating system of the
computer and it also allows the main processor to be idle more often, where it is the
most power-efficient. As the RTOS does not need to be operating at a fast speed, its
transistors can be made to have a really low static power consumption which means they
will only consume power when active.

The role of the power management unit can be to do:

• Fan management;

• Engine-level power gating;

• Hardware sequencing;

• Power budget enforcement;

• Reclocking the processor;

• Performance and system monitoring.

Fan management can be done easily by polling on the temperature sensor periodically
and scaling linearly the power sent to the fan according to it.

Engine-level power gating requires saving the content of all the registers if we do
not want their content to be lost, as we explained in Subsection 5.2.4. Power gating
then requires following a precise script involving precise timing which is also known as
hardware sequencing.

A PMU can also be required to poll on an external power sensor to enforce the power
budget by reclocking the processor or asking the Operating System to do it. It may also
poll on performance counters to implement a DVFS policy.

94

5.3 Power management features of modern processors

We found out through reverse engineering that NVIDIA introduced a non-documented
PMU in 2009, in the GT215 chipset. This PMU is clocked at 200 MHz, has a memory
management unit (MMU) and also has access to all the registers of the GPU. It also
supports timers, interrupts and can redirect the interrupts from the GPU to itself instead
of the host. Several independent communication channels with the host are also available.
Starting from the Kepler family, the PMU is clocked at 324 MHz.

NVIDIA’s PMU also has performance counters to monitor some engines’ activity along
with its own in order to send an interrupt to the host when the card needs to be reclocked.
In other words, NVIDIA’s PMU is a fully-programmable and real-time “computer” with
a low-latency access to the GPU that can perform more efficiently whatever operation the
host can do. However, it cannot perform heavy calculations in a timely fashion because
of its limited clock frequency. This is however sufficient to perform complex operations
such as reclocking the GPU.

Intel also has a PMU, called Power Control Unit (PCU) because they already had a
Performance Monitoring Unit. Intel’s PCU is responsible for computing the instanta-
neous power consumption, as seen in Subsection 5.3.5. The PCU is finally responsible
for selecting the performance level, enforcing the power budget and sharing it between
the CPU and the GPU, depending on both their loads [8]. On Sandy Bridge, the PCU
uses more than 1 million transistors, roughly the same number of transistors found on
an Intel 486 processor (1989). This however represents one thousandth of the number of
transistors found in some Sandy Bridge processors released in 2011 [131].

5.3.7 The Boost feature

The hardware power capping feature allows enforcing a power budget. This budget is
necessary to protect the :

• power source, especially if it is a battery;

• voltage regulator, which may overheat;

• the processor itself, when overheating (TDP).

Performance levels used to be statically designed so as no matter what application is
being run, the processor would never exceed its power budget.

On modern processors, the limiting factor for a processor is often its capacity at dis-
sipating heat. However, if the power usage has been low for some time, the heat-sink
can handle dissipating more power than the TDP for some time. This transient power
budget would however still be limited by the power supply’s and the voltage regulator’s
maximum power output.

Intel calls this feature “Turbo boost” and it can increase performance by up to 40%,
as can be seen in Figure 5.17.

95

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

Figure 5.17: Dynamic behavior of the Intel Turbo Boost. After a period of low power
consumption, the CPU and graphics can burst to very high power and performance for 30 to
60 seconds, delivering a responsive user experience. After this period, the power stabilizes
back to the rated TDP. Source: [8]

The boost feature allows some dynamic flexibility in the way the power budget is
allocated to each core of the Intel processors. For instance, if one core is busy and the
others are idling, then the frequency of this core can be increased until the CPU’s power
consumption reaches the TDP. Likewise, when the Intel integrated GPU’s performance
is limited by its power cap, some of the CPU cores’ power budget can be moved to the
GPU dynamically.

NVIDIA introduced a similar technique, called “GPU Boost”, in the Kepler family in
2012. It was introduced in [132] which states that the fastest performance level is chosen
to be safe for the GPU in the worst possible thermal environment even while running
the most power-hungry real-world 3D application possible. It also says that in usual
scenarios, the GPU is likely to operate with a power consumption lower than the TDP.
It is thus possible to safely increase the GPU clocks until the power consumption reaches
the TDP.

We found out through reverse engineering that only the clocks of the 2D/3D/GPGPU
engine can be adjusted dynamically. The candidate clock domains are referenced in
the boost table in the vbios. The boost feature requires knowing the current power
consumption. NVIDIA uses an external power sensor (referenced in the external devices
table in the vbios) that monitors each voltage regulator’s power input lane. For each lane,
the power sensor acquires the supply voltage and the voltage across the shunt resistor
placed in series in this lane. The resistance of these shunt resistors is either 2 or 5 mΩ, it
can be found in the sense table in the vbios. The power budget is stored in a vbios table
which states the peak power consumption allowed and the average power consumption
which should be equal to the TDP. Finally, the voltage that should be set according to
the fastest clock domain is defined in the cstep vbios table. The usual granularity of this
table is around 26 MHz.

96

5.4 Power and performance analysis in modern NVIDIA GPUs

The boost reclocking policy will be explained in Section 5.5.

5.4 Power and performance analysis in modern NVIDIA
GPUs

In this section, we will first study the impact of voltage, temperature and frequency
of the clock on the power consumption of a modern GPU. These experiments have been
carried out on a GeForce GTX 660, of the Kepler family, which has an embedded power
sensor.

This power sensor is similar to the one used in [133], except we did not find any of
the delay issues the authors experienced. This is probably due to an excessive averaging
done by the proprietary driver, in hardware and/or software along with the inability for
the GPGPU application to control when the power sensor should be polled. Because we
reverse engineered the communication with the external sensor, we can poll the sensor
whenever we want and program it to average as much as we want. The power sensor
found in our Geforce GTX 660 is Texas Instrument’s INA3221 [134].

18

20

22

24

26

28

30

32

34

36

38

30 40 50 60 70 80 90

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

W
)

Temperature (°C)

Voltage = 0.8250 V

Voltage = 1.2125 V

Cubic fit for Voltage = 0.8250 V

Cubic fit for Voltage = 1.2125 V

Figure 5.18: Power consumption of our Geforce GTX 660 as its temperature increases.
Measurements done at the lowest and highest possible voltages.

In Figure 5.18, we used the power sensor to evaluate the impact of temperature on the
power consumption of our Geforce GTX 660. We can see that the higher the power supply
voltage of the GPU, the more sensitive to temperature the GPU’s power consumption will
be. Both curves have been fitted using a cubic function with different parameters. Data
has been acquired by bumping the fan speed to the maximum to lower the temperature
as much as possible. We then shut the fan down to allow the temperature to rise and
to limit the variance due to the fan’s own power consumption which will be detailed
in Figure 5.19. As the GPU does not produce enough heat to reach 90°C by itself, we
used a powerful hair-drier on the heatsink to make the temperature rise. Even though
the GPU was as idle as possible, some of the power measurements are far from the fit,

97

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

this could be due to the self-refresh mechanism of the VRAM, needed to keep the data
in memory (Subsection 5.2.4). At the maximum voltage, the power consumption, when
temperature is at 90°C, is 38% higher than at 34°C. Active cooling can thus lower the
power consumption by lowering the temperature despite an increased power consumption
needed to drive the fan.

We evaluated the power consumption of the fan according to its commanded speed.
According to our reverse engineering and to the thermal vbios table, this fan is supposed
to be driven using a PWM controller, at a frequency of 2.5kHz. The commanded speed
simply is the duty cycle during which the output of the PWM controller is high. This fan
should be driven in the range [40, 100]%. In Figure 5.19, we show the relation between
the PWM duty cycle, the fan speed in Revolution Per Minute (RPM) and the power
consumption of the GPU. To perform our experiment, we set the fan to 100%, polled
the power consumption and averaged the wattage before lowering the fan speed by 1%
and polling the power sensor again. The fan stopped spinning at 23% which explains
the sharp decrease in power consumption. Starting from 24%, the power consumption
increased roughly linearly with the duty, peaking at 4.5W. The fan’s RPM followed a
more logarithmic curve with the power.

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

19

20

21

22

23

24

25

F
a
n
 s

p
e
e
d

 (
R

P
M

)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

Fan power (%)

Fan RPM

Power (W)

Figure 5.19: Power consumption of our Geforce GTX 660’s fan depending on the PWM’s
duty cycle.

Finding the optimum between fan speed and lower power consumption is however
harder because it depends on the thermo-dynamic laws and parameters such as the air
temperature, the profile of the heatsink and the airflow generated by the fan. Driving
the fan speed linearly with the temperature is however a good heuristic that is used by
NVIDIA and other fan controllers such as the ADT7473.

In Figure 5.20, we tried evaluating the impact of voltage on static power consumption.
As we do not currently have the knowledge to enable clock gating on most of the chip
to cut down the dynamic power consumption to 0, we instead decided to evaluate the
power consumption at different performance levels. For each performance level, we sam-

98

5.4 Power and performance analysis in modern NVIDIA GPUs

pled power consumption while going from the highest to the lowest voltage possible with
the fan speed set to the maximum. Our voltage regulator supports 31 discrete voltages
ranging from 0.8 to 1.2V. Throughout the test, the temperature varied from 31 to 34°C.
This temperature change is low-enough for us to ignore its influence on power consump-
tion. In general, the lower the performance level, the lower the impact of voltage on
power consumption.

20

25

30

35

40

45

50

55

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

Voltage (V)

high freq

medium freq

boot freq

low freq

(a) Actual power consumption depending on
the voltage and frequency

23

24

25

26

27

28

29

30

31

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
P

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

Voltage (V)

boot freq

boot freq fit

(b) Modeling the impact of power on power
consumption using a quadratic fit

Figure 5.20: Power consumption of our Geforce GTX 660 as we vary voltage at a temper-
ature of 32 °C

The core clock in our performance levels is the following: 27 MHz for low; 324 MHz for
boot; 862 MHz for the medium and 1254 MHz for the high performance level. However,
the exact frequency of each clock in the performance levels is meaningless because we
have no idea how many transistors are clocked by each clock domain. Without having
perfect knowledge about which portions of the GPU can be clock-gated and which of
them are clock-gated by default, it is impossible to accurately use linear regression to get
an estimate of the number of transistors in each clock domain. We are however working
towards learning as much as possible about clock gating on NVIDIA GPUs which could
allow us to get these estimates. For the lowest performance level, we configured as many
clock domains as possible to run on a 27 MHz clock (crystal clock). The remaining
clocks not running at 27 MHz were the host clock, running at 277 MHz and an unknown
clock running at 250 MHz. This custom performance level allows us to lower the dynamic
power consumption as much as possible without clock gating every part of the chip which
may not even be possible. Using this performance level, the power consumption reached
25W with the highest voltage and the lowest possible temperature.

Since temperature does not affect the dynamic power consumption, we can see from
Figure 5.18 that temperature can add up to 10W to the static power consumption at
this voltage, pushing the maximum static power consumption of our GPU to 35W. As
this GPU’s power budget is 124W, the static power can thus represent up to 28% of the
total power consumption. In a gaming scenario, with the voltage set to the maximum
and a usual operating temperature of 50°C, the static power consumption is limited to

99

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

27W, which represents less than 22% of the TDP.

In an idle scenario, performance is not needed. Aside from power gating and clock
gating every possible block, lowering the performance level and the voltage can yield
power savings. At 32°C, the GPU consumed a bit less than 55W at the maximum
voltage and frequency level while it consumed less than 25W at the lowest voltage and
lowest performance level. It is thus possible to more than halve the power consumption
in an idle scenario.

In 2012, we evaluated [104] the influence of the clock frequencies on a GTX 480. This
GPU only had 3 performance levels and did not have the boost feature. It also did not
have a power sensor which means we had to use an external power sensor which we polled
at 20 Hz to get the current power consumption.

In Figure 5.21, we calculated the energy and time taken to compute 20,000 times a
512 x 512 matrix addition at different core (c-*) and memory (m-*) frequencies. Even
with only 3 performance levels, it is possible to save 20% of energy while only increasing
the processing time by 6%. The lowest performance level actually consumes more energy
although it uses less instantenous power because it takes more time to compute the result.

Figure 5.21: Power consumption and execution time of the 512 x 512 matrix addition
program

In this example, the memory is mostly idle as all the data can fit into the caches of
the GPU, the task is thus compute-bound. Using a GPU with the boost feature, the
memory speed could have been kept as low as possible while pushing the core clock to the
maximum which would have yielded a lower power consumption for the same processing
time. We performed again such a test on our Geforce GTX 660 which has 2 GB of
power-hungry GDDR5 RAM. We wrote a compute-bound GPGPU program multiplying
big matrices using CUDA and used NVIDIA’s proprietary driver to execute it. We then
used NVIDIA’s coolbits [135] to lower the memory clock and compare the execution time
and the power consumption to the original clocks. The results are visible in Table 5.1
and show that 27.8% of energy could be saved while having no performance impact.

In Figures 5.22 and 5.23, we evaluated the relevance of DVFS in an heterogeneous
system where both a CPU and a GPU are used to compute data. This test was carried out
on an Intel Core i5 2400 processor, a Geforce GTX 480 and the same power sensor used
previously to monitor the global power consumption of the computer. The experimental

100

5.4 Power and performance analysis in modern NVIDIA GPUs

Core clock Memory clock Execution time Power

1023 MHz 6008 MHz 12.3 s 43.3 W

1023 MHz 1620 MHz 12.3 s 31.3 W

Table 5.1: Power consumption and execution time of compute-bound program depending
on the core and memory clocks.

workload is from the Rodinia benchmark suite 2.0.1 [124], a benchmarking suite for
heterogeneous computing. In the backprop test, the energy consumption could be reduced
by about 28% while only decreasing performance by 1%.

Figure 5.22: Execution time of the Rodina programs

Figure 5.23: Energy consumption of the Rodina programs

In [109], Le Sueur et al. presented that Dynamic Voltage Frequency Scaling was getting
counter productive because static power consumption was becoming more prevalent.
Three years later, we proved static power consumption can be less than a third of the
total power budget in the worst case scenario. Moreover, in [105], we found out that
DVFS became more and more effective from one generation of NVIDIA GPU to another.
Indeed, in the Tesla family, released in 2006, we managed to save 13% of energy on a
test similar to Figures 5.22 and 5.23. The following family (Fermi, 2010) managed to

101

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

save 40% while the Kepler family, released in 2012 could save up to 75%. This is in clear
contradiction with what the idea presented in [109] which says DVFS is becoming less
and less useful. Finally, thanks to the boost features of new processors, it is now possible
to change the frequency of processors with a much-higher granularity while performance
counters can provide the necessary information to dynamically identify the bottlenecks.
The power budget can then be reallocated in order to increase the performance of the
processors and accelerators that need more power while slowing down the ones that are
not useful to stay in the power budget or to save power.

5.5 Analysing the reclocking policy of a Kepler NVIDIA
GPU

In Figure 5.24, we demonstrate the influence of the PMU’s performance counters on
the DVFS decision on the NVIDIA proprietary driver, version 337.25. To create those
figures, we first needed to be able to generate a fake load on any counter while the card
was actually idle. We achieved that by forcing the PMU’s performance counters to the
wanted value by alternately counting every clock cycle or not counting anything. We then
needed to get an accurate view of the clock tree to know at which frequency each clock
domain runs at. Since Nouveau already has this ability and can be run in the userspace,
we decided to modify it in order to make it runnable alongside the NVIDIA’s proprietary
driver, to parse the clock tree and to output the frequency of every clock domain. Using
those two tools, we have been able to observe that NVIDIA does not increase the core
clock until the core’s activity performance counter reports at least 61% of usage. At this
activity level, it takes up to 6 seconds and 17 steps to go from the lowest performance
level to the highest one. When increasing the reported activity value, we can observe
that these figures drop to 7 steps and about one second when the activity level is 65%
and only 3 steps and a tenth of a second when the activity level is 70%. Unfortunately,
a low activity level does not declock the GPU unless it is under 10%, in which case it is
considered “not in active use”.

300

400

500

600

700

800

900

1000

1100

1200

0 2 4 6 8 10 12 14 16 18

50

55

60

65

70

75

C
lo

c
k
 f
re

q
u

e
n

c
y
 (

M
H

z
)

G
R

 U
s
a

g
e

 (
%

)

Time (s)

Core (MHz) Perf_Core (%)

300

400

500

600

700

800

900

1000

1100

1200

0 2 4 6 8 10 12 14 16 18

50

55

60

65

70

75

C
lo

c
k
 f
re

q
u

e
n

c
y
 (

M
H

z
)

G
R

 U
s
a

g
e

 (
%

)

Time (s)

Core (MHz) Perf_Core (%)

Figure 5.24: Response of the DVFS policy to a high activity level

102

5.5 Analysing the reclocking policy of a Kepler NVIDIA GPU

In Figure 5.25, we show the influence of power consumption on the DVFS reclocking
policy. To read the power sensor without risking pertubating the PMU, we decided to
create a tool that intercepts the I2C transactions between the external power sensor
and NVIDIA’s PMU, decode them and compute the power usage from the current and
voltage readings sent to the PMU. The power consumption, core’s activty level, clocks
of the different clock domains and the temperature are then synchronized in one tool
outputing a csv file which is then plotted with gnuplot. Since the performance levels
are designed so as normal applications cannot consume more power than the TDP, we
tried lowering the 124W power budget by modifying the vbios. However, NVIDIA’s
proprietary driver seems to ignore any power budget under 100W. To make the effect of
power on the reclocking policy clear, we decided to modify the shunt resistors’ values in
the vbios from 5mΩ to 2mΩ which effectively lowered the power budget to 80W. We used
the Unigine Heaven OpenGL 4 benchmark [136] in order to generate a load sufficient to
reach 110W when not using the power capping technique.

500

600

700

800

900

1000

1100

10000 15000 20000 25000 30000 35000 40000 45000

0

10

20

30

40

50

60

70

80

90

100

C
lo

c
k
 f
re

q
u

e
n

c
y
 (

M
H

z
)

P
o

w
e

r
(W

)
&

 G
R

 u
s
a

g
e

 (
%

)

Time (ms)

Perf Core (%)

80W Power Cap

Power (W)

Core (MHz)

Power (W)

80W power cap

Core (MHz)

Perf_Core (%)

Figure 5.25: Impact of the power usage on the DVFS policy

In the figure, we can clearly see that whenever the power consumption increased over
80 W, the frequency of the core clock dropped sharply and stayed roughly constant until
core’s activity level dropped a little. This seems to suggest that the reclocking policy
takes a decrease in usage level into account only when it is in a reduced-power mode.

The previous two figures seem to suggest that NVIDIA has a power and performance
model which allows its DVFS policy to react quickly without overshooting nor having
ping-pong effects. Their model seems better than the generic model we proposed in [105]
which is precise to about 25% in average when it comes to power predictions but has
very high performance prediction errors of up to 65%. This generic model was based on
performance counters and uses linear regressions to from a limited set of tests. It was
then validated on NVIDIA GPUs of 3 different families. We will not present this model
because of its inaccuracy which prevents its usage in a DVFS policy.

103

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

500

600

700

800

900

1000

1100

1200

0 20000 40000 60000 80000 100000 120000 140000

0

20

40

60

80

100

120

140
C

lo
c
k
 f
re

q
u

e
n

c
y
 (

M
H

z
)

P
o

w
e

r
(W

)
&

 T
e

m
p

e
ra

tu
re

 (
°C

)

Time (ms)

Core (Mhz)

Temperature (°C)

Power (W)

Power (W)

Core (MHz)

Temperature (°C)

Figure 5.26: The action of temperature on the DVFS reclocking policy

30

40

50

60

70

80

90

100

110

120

130

0 20000 40000 60000 80000 100000 120000 140000

0

5

10

15

20

25

P
o

w
e

r
(W

)
&

 T
e

m
p

e
ra

tu
re

 (
°C

)

F
S

R
M

 D
iv

Time (ms)

Temperature (°C)

Power (W)

FSRM div

Power (W)

FSRM div

Temperature (°C)

First threshold: 97°C

Second threshold: 100°C

Figure 5.27: The action of temperature on the FSRM

Finally, we looked at the impact of temperature on the DVFS policy. To perform those
tests, we completely disabled the fan and used a hair-drier to increase the temperature of
the GPU to 100°C. In Figure 5.26 we can see that the core clock got lowered a little when
reaching 73°C then 83°C. However, the big power-drop when the temperature reached
97°C and then 100°C is not due to the DVFS reclocking policy, it is due to the action
of the FSRM which we introduced in Subsection 5.3.5. As we can see in Figure 5.27,
the core clock first got divided by 4 (22) when the temperature reached 97°C and then
by 1024 (210) when it reached 100°C. This demonstrates that the FSRM can be very
effective at lowering the power consumption of a circuit when needed. If the temperature
had kept rising and reached 102°C, the voltage regulator would have been disabled by
the GPU to prevent any dommage to the hardware.

104

5.6 Can modern processors have autonomic power management?

5.6 Can modern processors have autonomic power man-
agement?

In 2001, IBM proposed the concept of autonomic computing [65] to aim for the creation
of self-managing systems as a way to reduce their usage complexity. The idea was that
systems are getting more and more complex and, as such, require more knowledge from
the technicians trying to maintain them. By having self-managing systems, the user
could write a high-level policy that would be enforced by the system itself, thus hiding
complexity.

As an example, a modern NVIDIA GPU could perform the following self-functions:

Self-configuration

The GPU is responsible for finding a configuration to fill the user-requested tasks.

Since a GPU is an accelerator, it requires the user to send all its commands through
a so-called push buffer. No self-configuration is thus possible for the computation. How-
ever, it is possible for the GPU to self-configure enough for it to be able to execute the
commands sent by the user. This operation is done partially by the hardware to make
the card visible to the host computer. The vbios contained in the card is then executed
during the Power-On Self Test (POST) procedure in order to initialiase the clock tree,
some engines and set a video mode to display content on the screen.

Self-optimization

The GPU is responsible for knowing how to satisfy the user’s needs while consuming
as little power as possible.

Power can be saved by lowering the supply voltage and the frequency of the different
clock domains (DVFS) without affecting performance dramatically. The performance
need and the current bottleneck can be identified using performance counters. The
power management unit can then poll on these counters and decide at which frequency
should every engine run and at which voltage should the GPU be powered at.

To increase the power savings, it is possible to stop the clock of a transistor block
entirely if it will not be used for some time. This can also be followed up with cutting
down the power supply of the block to entirely cut the power consumption of this block.
The first can be done by the transistor block itself while power gating requires the
intervention of the PMU as it needs to save the context.

Self-healing

The GPU is responsible for keeping itself in a good working condition.

Since it has a power sensor and a temperature probe, the GPU can be aware of its
over-current and over-temperature problems and react to them by increasing the fan
speed and/or lowering the power consumption by downclocking the GPU.

105

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

This operation can entirely be done inside the GPU, either by using dedicated hardware
like the FSRM or by using the PMU.

Self-protection

Integrity and confidentiality between users can be provided by the GPU in the same
way it is done on CPUs, by allocating a virtual address space to each application.

Since GPU cannot usually be preempted while executing a program, it is possible to
achieve availability by killing long-running jobs to let other programs use the GPU.

The GPU can also store secrets like HDCP [137] keys internally to encrypt/decrypt
the video output on the fly using a dedicated engine called PCRYPT. Such a mechanism
can be used to upload encrypted information to the GPU, have it decrypt it and process
it. This would make some information unreadable by other clients on the GPU or even
the CPU.

Discussion on autonomic processors

Although the aim of autonomic computing is primarily oriented towards lowering hu-
man maintenance cost, it can also be extended to lower the development cost. By having
self-managing subsystems for non-functional features, integration cost is lowered because
of the reduced amount of development needed to make it work on a new platform. Ideally,
a complete system could be assembled easily by using unmodified autonomic subsystems
and only a limited amount of development would be needed to make their interfaces
match.

This approach does not make sense in the IBM-PC-compatible personal computer mar-
ket as the platform has barely evolved since its introduction in the way that components
interact (POST procedure, x86 processors and high speed busses). This renders the de-
velopment of drivers executed on the CPU cheaper than having a dedicated processor for
the driver’s operations. However, in the System-On-Chip (SoC) world where manufac-
turers buy IPs (Intellectual Property blocks) and assemble them in a single-chip system,
the dedicated-processor approach makes a lot of sense as there is no single processor ISA
and operating system (OS) that the IP manufacturer can depend on. In this context,
the slimmer the necessary driver for the processor and operating system, the wider the
processor and OS choice for the SoC manufacturer.

This is the approach that Broadcom chose for its Videocore technology which is fully
controllable by a clearly-documented Remote Procedure Calls (RPC) interface. This
allowed the Raspberry Pi foundation to provide a binary-driver-free Linux-based OS on
their products [138]. However, the Open Source driver only uses this RPC interface and
is thus not a real driver as it is just some glue code. This led the graphics maintainer
of Linux to refuse including this driver in Linux as the code running in Videocore is still
proprietary and bugs there are unfixable by the community [139].

106

5.7 Conclusion

Broadcom’s Videocore is a good example of both the advantages and the drawbacks of
autonomic systems. Adding support for it required very limited work by the Raspberry
Pi foundation but it also means the real driver is now a black box running on another
processor which cannot be traced, debugged, or modified easily. From a researcher point
of view, it also means that it will become much harder to study the hardware and
propose new drivers and algorithms. In the case of NVIDIA, this situation could happen
if NVIDIA PMU’s code was not readable and writable by the host system. Luckily,
Broadcom hired a well-known open source developer in June 2014 to write an open
source driver for the Raspberry Pi’s GPU [140].

5.7 Conclusion

In this chapter, we provided a general introduction to power management and power
management features of modern processors. Since power management is often kept secret
by processor manufacturers, we have documented most of these features through reverse
engineering of multiple NVIDIA GPUs. Some of the features have been re-implemented
in the Open Source Linux driver for NVIDIA cards, called Nouveau, which provides a
very flexible test-bed for researchers and allow easy reproducibility because this driver is
the default one for NVIDIA GPUs on Linux.

We then studied the origin of power consumption in modern processors and identified
that temperature, supply voltage and frequency of processors are the biggest parameters
for the processors’ power consumption. When running at 90°C, our NVIDIA Geforce
GTX 660 consumed 38% more power than when running at 34°C. Likewise, when idle
at the highest performance level, the GPU consummed 2.2 times more power than when
operating at the lowest performance level.

We also analysed the reclocking policy (DVFS) of a modern NVIDIA GPU with re-
gards to performance, temperature and current power consumption. We identified that
performance of the main engine is increased when its usage level exceeds 60% and is
decreased when its activity drops to 0% or if the power consumption exceeds the rated
maximum power consumption (TDP).

We finally discussed about the suitability of modern processors to provide autonomic
power management and concluded that it is already possible. It however makes it diffi-
cult for applications to predict their performance which can be problematic for real-time
applications such as video applications and games. In the future, we can imagine appli-
cations asking the processors and their power management drivers to guarantee a certain
computing bandwidth and/or a maximum wake-up latency.

Future work will focus on getting stable reclocking support on a modern NVIDIA GPU
to experiment with generic and efficient DVFS algorithms. More work will also be done
on power- and clock-gating which are the two main power management features which
are not entirely understood yet.

107

5. HARDWARE: DEFINING AN AUTONOMIC LOW-POWER NODE

108

Chapter 6

OS: Making real-time power
management decisions

Contents

6.1 Introduction . 110

6.2 State of the art . 111

6.2.1 Network interface run-time selection 111

6.2.2 Processor/Accelerator run-time selection 114

6.2.3 Dynamic handovers . 119

6.2.4 Run-time power and performance management generic flowgraph 120

6.3 Definition of an abstract decision flowgraph 122

6.3.1 Decision flowgraph . 123

6.3.2 Metrics . 123

6.3.3 Prediction . 123

6.3.4 HW Models . 124

6.3.5 Scoring . 125

6.3.6 Decision . 125

6.4 Implementing the decision flowgraph in a framework 125

6.4.1 Metrics . 125

6.4.2 Predictions . 125

6.4.3 Flowgraph . 129

6.4.4 Scoring . 129

6.4.5 Decision . 130

6.5 Evaluation . 130

6.5.1 Network selection WiFi / GSM 130

6.5.2 Selecting performance levels and processors 133

6.5.3 Performance evaluation . 135

6.6 Conclusion and future work . 137

109

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

6.1 Introduction

In the previous chapter, we saw that it was possible for processors to behave following
the autonomic principles. In this chapter, we introduce how multiple processors or radios
can interact with each others.

Indeed, mobile end-user devices such as smartphones and tablets usually have multiple
ways of performing the same task. For instance, a smartphone could connect to the
Internet using the WiFi adapter or the 3G/4G modem. Likewise, it may perform some
calculation on the main CPU or on the GPU using GPGPU. Depending on the current
usage of the device, every way can become the most efficient one but, given the very
dynamic nature of the user’s usage of the device, it is unlikely for a static configuration
to always achieve the lowest power consumption while still meeting the user’s expected
Quality of Service (QoS).

In heterogeneous devices, it is impossible for each sub-device to know when they should
be used and what their power budget is. This information can only come from the
Operating System (OS) since it is the piece of software that controls all the peripherals
and accelerators. The accelerators could then have autonomic power management, as
introduced in Chapter 5. In mixed-critical systems, it is also the OS’s job to centralise
deadline constraints and let the hardware know about the performance needed. Critical
jobs must then be executed before their deadline while saving power through DVFS
and/or DPM, as explained in [141].

The OS’s scheduler is thus in charge of selecting on which processor/accelerator each
task should be scheduled on, which network interface should an application use to com-
municate on the Internet and how to react to the dynamicity of the load generated by
the user.

In this chapter, we propose a generic decision flowgraph for power and performance
management. This flowgraph allows run-time decision making, even with real-time re-
quirements and is highly reusable thanks to its modular nature. We also implemented
a framework around this generic decision flowgraph to minimise the amount of work
needed to implement a new power- and performance-management decision engine. This
is done by separating the decision process in different blocks that can be re-used later.
This eases experimentation during the design phase and the well-defined interface allows
dumping debugging textual and graphical debugging information which are used through-
out the chapter to showcase our framework. Finally, by using the proposed framework,
applications also separate the decision engine from the application which improves its
re-usability.

Section 6.2 introduces opportunities for power savings and the state of the art related
to run-time power and performance management. The definition of the proposed decision
flowgraph is presented in Section 6.3 and its implementation is detailed in Section 6.4. An
evaluation of the framework is given in Section 6.5. Section 6.6 concludes and presents
the future work.

110

6.2 State of the art

6.2 State of the art

In this section, we both introduce run-time decision engines and their need for power
management.

6.2.1 Network interface run-time selection

Mobile end-user devices such as smartphones and tablets usually have multiple ways of
accessing the Internet, may it be WiFi (b/g/n), EDGE, 3G, 4G or Bluetooth. All these
ways of accessing the Internet are usually provided by two separate radios. The WiFi
adapter supporting the WiFi modes b/g/n and Bluetooth while the EDGE, 3G and 4G
is provided by another adapter.

In [9], the authors compared the power consumption of the WiFi, 3G and GSM inter-
faces. The WiFI and 3G measurement have been carried out on an HTC Furze smarth-
pone while the GSM measurement were carried out with two Nokia phones. The exper-
iment consisted in periodically sending data using each interface and see how the data
size and the interval between the transfers influenced the energy consumption of each
data transfer. For the GSM and 3G experiments, they break the energy consumption
in three parts: 1) Ramp energy : energy required to switch to the high-power state, 2)
Transmission energy, and 3) Tail energy : Energy spent in high power state after the
completion of the transfer. For the WiFi experiment, the power cost is divided in: 1)
Scan-Associate energy : Energy spent to scan and associate to an access point, and 2)
Transfer energy : Energy spent to transfer data.

(a) 3G: Energy components (b) 3G: Varying inter-transfer times

Figure 6.1: 3G Measurements: (a) Average ramp, tranfer and tail energy consumed to
download 50K data. The lower portion of the stacked columns shows the proportion of
energy spent for each activity compared to the total energy spent. (b) Average energy
consumed for downloading data of different sizes against the inter-transfer time. Source: [9]

In Figure 6.1, the authors have shown that the energy cost of a 1K data transmission
over a 3G network consumed roughly the same energy as a 100K transfer. This is because
most of the power consumption is not due to the transmission cost but rather due to

111

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

the Tail energy. This can be explained because a 3G interface has three states. The
idle state is when the interface is not used to download or upload data. In this state,
the radio is not connected to the network. From the idle state, the radio can transit to
the Dedicated Channel (DCH) state which allows high throughput and a low delay for
transmissions. The radio can then transit to the Forward Access Channel (FACH) state
which is a lower-power state which is used when there is little traffic to transmit. From
the FACH state, the radio interface can either return to the DCH or the idle state.

A high Tail energy means that the radio spends too much time in the FACH state
instead of returning straight to the idle state. The energy consumption increases sharply
with when the inter-transfer time is in [1, 3] seconds. This is because the radio is always
in the DCH state. The energy consumption increases less sharply in the inter-transfer [4,
14] seconds range because the radio is put in the FACH mode which has half the power
consumption of the DCH state. In the [15, 19] seconds range, the energy consumption
reaches a plateau because the radio puts itself into the idle mode which cuts down the
power consumption of the radio almost entirely. The time spent in this mode does not
increase the energy cost of transmissions.

In Figure 6.2, the same experiment was carried out with very different outcomes.
Because GSM is stateless, the radio is put back to sleep as soon as the transmission is over.
This explains why the inter-transfers time does not influence the energy consumption of
a transmission much. Contrarily to the 3G interface, the energy cost of a transmission
is mostly due to the size of the transmission.

(a) GSM: Energy components (b) GSM: Varying inter-transfer times

Figure 6.2: GSM Measurements: (a) Average ramp, tranfer and tail energy consumed to
download 50K data. The lower portion of the stacked columns shows the proportion of energy
spent for each activity compared to the total energy spent. (b) Average energy consumed
for downloading data of different sizes against the inter-transfer time. Source: [9]

In Figure 6.3, we can see the power consumption profile (not energy, like the original
authors wrote) of a GSM and a 3G interface transferring 50K of data. We can see the
same power consumption profile, but the tail time of the GSM transfer is half of 3G’s.
The power consumption is also much lower for such a small data size, but the 3G transfer
was 3 times faster than GSM’s.

112

6.2 State of the art

(a) GSM: Power Profile - 50K (b) 3G: Power Profile - 50K

Figure 6.3: Power profiles of 3G and GSM networks. Source: [9]

(a) WiFi: Energy components (b) WiFi: Varying inter-transfer times

Figure 6.4: WiFi Measurements: (a) Average ramp, tranfer and tail energy consumed to
download 50K data. The lower portion of the stacked columns shows the proportion of energy
spent for each activity compared to the total energy spent. (b) Average energy consumed
for downloading data of different sizes against the inter-transfer time. Source: [9]

In Figure 6.4, the authors used the same experiment again for the WiFi interface and
found out that most of the power cost of transmitting 50K of data was due to scanning
to find the right access point and connecting to it. Once this was operation was over, the
transfer size impact was not as high as the found in GSM or 3G. Interestingly, the power
consumption increases linearly with the inter-transfer time. The authors claim this is
due to the high cost of keeping the interface connected (3 to 3.5 Joules per minute).

In Figure 6.5, the authors focused on the impact of data size and compared the different
network interfaces. The WiFi interface has been split in two: WiFi + SA is the cost
of scanning, connecting to the access point and sending the data whereas WiFi is only
about sending the data. The offset between the two is thus constant but shows how GSM
can be more efficient than WiFi in case the WiFi interface is not already associated.

Unsurprisingly, WiFi is more efficient than GSM in most usages except when idle
because of the short distance between the emitter and the access point. However, if no

113

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

Figure 6.5: WiFi versus 3G versus GSM measurements: Average energy consumed for
downloading data of different sizes against the inter-transfer time. Source: [9]

WiFi connection is possible, either because there are no access points or because the user
is moving too fast, then a 3G connection will most likely become the most power efficient
for usages such as browsing or downloading emails. GSM is more efficient for an idle
scenario where the users wants to keep his/her connections opened but is not actively
using the connection. It thus important to be aware of the current network usage and the
power consumption and performance characteristics of the available network interfaces
in order to select the most efficient interface fulfilling the needed QoS.

6.2.2 Processor/Accelerator run-time selection

In this subsection, we study the different types of asymmetry found between processor
cores or accelerators. We then evaluate how we can take advantage of this asymmetry at
run time to lower the power consumption or boosting performance.

ARM’s big.LITTLE

As we explained in 5.2.3, one processor can either be very fast or very power efficient
because transistors need to be etched in different ways to achieve one or the other.
ARM has tried to get the best of both worlds by increasing the number of cores in their
processors. Some of the cores are performance-oriented while the others are low-power.
The LITTLE set of cores is actually a Cortex-A7 which is a simple ARM processor while
the big set of cores is actually a Cortex-A15, which executes instructions out of order and
has twice the amount of pipeline stages. Every core can be powered down (power-gated)
or have its clock modulated to lower the power consumption or increase performance
(DVFS [109]). ARM markets this technology under the name big.LITTLE [142].

From an operating system point of view, all the cores of a big.LITTLE processor
are the same. However, usual schedulers assume a Symmetric MultiProcessing (SMP)
system where all processors are the same. Since a big.LITTLE processor has asymmetric
performance and power-consumption characteristics, the scheduler cannot make a good
decision which negates the improvement made possible by the hardware. Such a scheduler
does not exist yet in Linux but support for it is slowly being implemented [143][144].

114

6.2 State of the art

Figure 6.6 hints about the power savings achievable for different types of applications
when run on the right big.LITTLE core.

Figure 6.6: Power savings achieved when running applications on the right core. Source [10].

A simple scheduling heuristic could consist in scheduling tasks on the least amount of
LITTLE core possible in order to power gate the others. If one task becomes CPU-bound,
it should be migrated to a big core in order to improve its performance. This heuristic is
based on the assumptions that consolidating tasks consumes less power than spreading
them on more cores running at lower frequencies. This seems accurate on desktop or
server processors but may not be true for low-power processors with a low static power
consumption. In [145], the authors managed to save 10% of power consumption by
spreading tasks and keeping the clock low instead of consolidating tasks. An accurate
power and performance model in the scheduler is thus needed to make optimal decisions.

A power and performance modelisation of a big.LITTLE board has been carried out
in [146] with a static performance level (1GHz) and voltage (1.05 V) for both set of cores.
All the cores were power gated except one big and one LITTLE core. The authors found
out through their benchmarks that the LITTLE core consumed a constant 1.44 W at full
charge while the big core consumed from 4.2 to 5.15 W depending on the application.
The performance improvement from the LITTLE core to the big core ranged from 45 to
130%. In their benchmarks, the authors found out that even at full charge, either core
could be the most efficient one. However, migrating a task from one core to the other
is quite expensive. Migrating from the LITTLE to the big core takes 2.1 ms while the
reverse operation takes 3.75 ms. This is why being able to predict the performance and
power consumption of a task on a core type based on the current performance and power
consumption on another core type could allow the OS to dynamically select the most
appropriate core type for the task. This is however not possible in real life yet because
tasks are dynamic and there are multiple cores executing multiple tasks at the same time.
This could change if ARM develops a hardware power consumption model like Intel’s in
order to predict its power consumption per task.

In [147], the authors took another approach and tried to select the most efficient
processor type in a browsing scenario based on the content of the web pages. They

115

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

analyzed 5000 web pages to perform regression modeling of both performance and power
consumption. The model was then used to identify the best core type and frequency to
minimise power consumption while still loading in less than a certain time. The authors
managed to save up 83% of energy in average compared to a performance-oriented policy
while increasing by 4.1% the number of websites not loading in the given delay. When
compared to Linux’s CPUFreq DVFS strategy, it managed to save 8.6% of energy while
increasing performance by 4.0%.

Non-Uniform Memory Access

Big.LITTLE may become more complex in the future by becoming a Non-Uniform
Memory Access (NUMA) architecture where not all the central memory is accessible at
the same speed/latency for every core. In those architectures, a NUMA node is composed
of a set of cores and a memory attached to it. An example of a NUMA architecture is
visible in Figure 6.7, generated by hwloc [11].

Figure 6.7: A simple NUMA architecture with two sets of 2-cores processors attached to
12GB of RAM each. Generated with hwloc [11].

In such an architecture, a process is most-efficient when all its data and threads are
located in the same NUMA node. However, when multiple processes/threads need to
access the same data which does not fit into one NUMA node, data and/or threads need
to be migrated to lower the access cost and increase performance, as suggested by [148].

Some frameworks such as OpenMP and Intel Threading Building Blocks have been
proposed to help developers to create multi-threaded applications in multi-core environ-
ments and make them scale well when the number of cores increases. Improvements have
been suggested to take into account the NUMA information [149] in those frameworks.

However, these frameworks do not address the problem of having multiple independent
applications running concurrently in a situation where all the data and processes can not

116

6.2 State of the art

fit in one NUMA core. In this situation, the OS should migrate threads and data in
order to maximise the usage of the local memory. Currently, the OS can only know
which process requested a memory buffer and which processes have access to it, by
tracking mmap calls on shared-memory file descriptors. Unfortunately, the OS does not
know how often this buffer is accessed because it is the processor’s job to walk the page
table and get the correspondence between the virtual and the physical address.

Processors manufacturers could however add a usage counter for each page which would
get incremented by the Memory Management Unit (MMU) every time a page is accessed.
In order to limit the overhead of this method in memory bandwidth usage, the Translation
Look-aside Buffer (TLB), which is a hardware cache to improve the performance of page
walking, could count the memory accesses to each page it is currently tracking and
increment the corresponding value in memory when the page gets evicted. The overhead
could be further reduced for both memory and memory bandwidth usage by lowering the
granularity of the technique from the page-table (4KiB) to the page directory (4 MiB)
one.

Periodically, the OS could then compute the number of accesses per second for each
process/thread to each memory page/directory. Using this information, it could identify
the performance bottleneck when it comes to memory accesses and move the memory
pages that are most-often used closer to their users or move their users closer to the them.
To lower the overhead even further, this operation could be done only when performance
counters would show a high usage of the interconnection link with the other NUMA
nodes.

We did not find any paper talking about the power savings achievable by making
placing processes/threads and data on the right NUMA node. However, since accessing
memory from another NUMA node is slower than accessing local memory, the perfor-
mance is not optimal. This means that the program will use more CPU time to execute
itself which lowers the time spent by the CPU in sleep mode and most likely increases
the average power usage.

NVIDIA’s Optimus

In 2010, NVIDIA introduced the Optimus technology in laptop computers. It allows
running graphical applications on Intel’s integrated GPU (IGP) or NVIDIA’s discrete
GPU depending on the performance need of the application.

In Optimus’s whitepaper [12], it is said that NVIDIA introduced a routing layer for DX
calls (used by 3D applications), DXVA calls (used by video playback applications) and
CUDA calls (GPGPU application). NVIDIA has a profile for most applications using
the GPU, pushed to their clients through a web server they manage. In the application
profile NVIDIA stores whether the GPU “can add quality, performance, lower power,
or functionality.” We can guess that they built a testing farm with multiple Optimus
laptops, gathered power consumption and performance metrics for each application and
decided which GPU should be used in every supported configuration.

117

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

Figure 6.8: NVIDIA Optimus Flow. Source: [12].

If the discrete GPU is chosen, it is first turned on before allowing the driver to configure
it for the application. Once rendering is completed in a texture (image), this texture is
copied directly from the IGP’s memory before being composited (drawn on the screen)
by the IGP. For performance reasons, texture are usually stored in a format that best
suits the memory they use. These so called “tilling” formats are different from vendors
to vendors. The NVIDIA discrete GPU thus had to add support for the tilling format of
Intel’s IGPs to be able to copy application’s output buffers to the IGP’s memory without
using CPU processing power. NVIDIA named this DMA engine “Optimus Copy Engine”.
The name given by Nouveau developers is PCOPY. An overview of Optimus for 3D and
video playback applications is shown in Figure 6.8.

Our experiment using the Nouveau driver have shown an idle power consumption of
17.334 W when the discrete GPU is powered up and using the Nouveau driver, while it
consumes 9.257 W when the discrete GPU is powered off. Disabling the discrete GPU
can thus save a substantial amount of power and multiply by two the battery-life of our
test laptop (Dell Latitude E6520). This power increase is however higher than it could
be because Nouveau does not do any sort of power or clock gating by default. Further
experiments are necessary.

StarPU

The research community proposed a runtime called StarPU [150] to express the paral-
lelism of a compute-related application by specifying codelets and a dependency graph.
Codelets have multiple implementations to fit each architecture it is meant to run on.
StarPU will then handle the task dependencies and schedule the codelets on the acceler-
ator the most appropriate processor or one that that is currently not executing anything.
It also manages memory and data transfers to get the highest performance by selecting
the fastest memory possible for the processor running an instance of the codelet while
also limiting the memory transfers that increase latency and use memory bandwidth.

118

6.2 State of the art

The most appropriate processor for a given codelet is selected by learning the execution
time of each codelet is learnt at run time and on every processor/accelerator type because
data influences a lot the execution time of a complex codelet [151].

Supported targets for the StarPU runtime include GPUs supporting GPGPU via
CUDA and/or OpenCL, Multicore CPUs (Intel x86, AMD64 or PowerPC). It also has
experimental support for cell processors such as the one found in the Playstation 3 and
is planning on support the new Intel platforms Intel SCC and Intel MIC/Xeon Phi. This
runtime is cross-platform and can be executed on Linux, Mac OS X and Windows.

Although the StarPU runtime is doing the right thing, it is difficult for the programmer
to deal with multiple programming frameworks and compilers. Right now, CUDA or
OpenCL code is loaded from an external file and probably compiled at launch time.
StarPU wrapped most of the boilerplate code to make it as easy as possible but it still
impedes the readability of the program. To enhance this readability, better compiler
support is necessary. Some work is currently underway to reduce code cluttering by
adding annotations to the code and let a compiler plugin generate the boilerplate code
for us [152]. This effort has however been made for GCC which has no backend for
GPUs, contrarily to LLVM. One solution could be to use Clang as a C/C++ frontend,
add annotations to specify codelets and let clang generate the LLVM code then the
machine code using existing LLVM backends (x86, x86 64, PPC, ARM, NVIDIA, AMD
(GPU)). This would allow specifying all the codelets in the same source code and compile
it for every target. Codelets could also be re-implemented to better suit to the specificity
of each platform. Thanks to the annotations, the StarPU runtime could still identify the
different tasks and execute them like they currently do.

A runtime such as StarPU could be enhanced and tuned to provide performance or
power efficiency to compute-intensive tasks depending on what the user is doing or his/her
performance need. We hope this runtime will become easier to use with time and will be
adopted outside of the High Performance Computing (HPC) community.

6.2.3 Dynamic handovers

Since a smartphone/tablet user’s activity is dynamic, being able to migrate the net-
work traffic to the most efficient interface and migrating programs on the most efficient
processor or accelerator can yield substantial power improvements compared to a static
launch-time configuration, as we saw in ARM’s big.LITTLE and the NUMA architec-
tures.

It is however not always possible to migrate computing tasks. For instance, Optimus
does not seem to be able to migrate applications between the discrete GPU and the
IGP. This is because Intel’s and NVIDIA’s internal architecture is different. It is thus
not really possible to pause an application on one GPU, copy its context on the other
GPU, reload the context and continue the execution. Even if it was possible, it would
still require copying hundreds of megabytes of textures from one GPU to the other and
recompile all the shaders (graphics programs running on the GPU). This would result

119

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

in a context switch lasting seconds instead of microseconds. This explains why NVIDIA
preferred testing applications themselves and create profile for them instead of launching
them on the wrong GPU which would either result in poor performance or high power
consumption.

StarPU solves the migration problem by segmenting the problem into chunks that
take a relatively short time to execute. It then wait for a processor or an accelerator
to become available before scheduling another chunk on it. This is suitable to perform
scientific computation but not really for games or usual applications that are not compute-
oriented.

Before MultiPath TCP (MPTCP) [153], it was also not possible to seamlessly sup-
port data connection handovers without the external network infrastructure supporting
it. This means that switching network interfaces would close all the TCP connections.
MPTCP is very promising for multihomed devices as it allows seamless handovers of TCP
connections if both the client and the server support it. This will enable selecting the
most power-efficient network interface for the current usage of the user without needing a
proxy. The MPTCP protocol is however not final yet, but it is implemented nonetheless
by Apple for Siri in iOS 7 [154] or in an experimental tree of Linux.

Power and performance decisions are not easy to make because of the network han-
dover and processor migration costs. It may indeed be more power-efficient to stick to
a less instantly-efficient mode that would avoid a ping-pong effect which would be both
damaging to the user experience and to the battery life. The decision also needs to take
into account the current state of each network interface.

Numerous articles are found in the literature about autonomic network selection. How-
ever, they all use an application- and hardware-specific decision making module that
needs to be re-implemented when a new radio is being used because accurate models are
heavily hardware-, driver- and protocol-dependent. Indeed, our generic power and per-
formance model [105] for NVIDIA GPUs was ten times less precise than a card-specific
one [124]. That is also the approach taken by Intel for RAPL [130]. It is thus very im-
portant to separate these models while still being able to compare their decisions. That
is why we are proposing a generic flowgraph for run-time and performance management.

6.2.4 Run-time power and performance management generic flowgraph

Decision engines are usually used in the literature for network interface selection in
multihomed mobile devices, consolidating workloads in data centres [155] or making dy-
namic power/performance trade-offs in CPUs/GPUs through dynamic voltage-frequency
switching [109].

Most articles on network selection in a multihomed environment usually aim at se-
lecting the interface that will best suit the QoS. Some decision models are based on
user-defined rules [156] or policy-based priority queues [157]. Other articles on the same

120

6.2 State of the art

topic incorporate more metrics in the decision process such as the available bandwidth
or the radio signal strength [158] while some also include power considerations [159][160].

A generic mathematical framework is also proposed [161] which takes into account
the current signal strength, the cost of using the network access technology, and the
client power consumed for the particular access technology. This model does not take
into account the different states of the radio or the type of traffic generated by the
applications. Simulations were carried out with MATLAB but no evaluation on the
impact on CPU and RAM have been carried out.

In [162], the authors proposed to use Genetic Algorithms [163] to find the network
interface that will minimise both the average power consumption and the bandwidth
dissatisfaction. Applications seem to be required to know their current bandwidth needs
while the power consumption of the radio is modelled as being linear with its bandwidth
usage which does not take into account that radios cannot be put to sleep straight away
after emitting data. Depending on the number of generations, the execution time varies
from about 50ms (10 generations) to 10s (2000 generations).

PISA [164] proposed to separate the application-specific part of an optimisation engine
from the non-application-specific part and defined interfaces for them to communicate.
This modularisation allows re-using the optimisation algorithms and share them with
other researchers. PISA is language-independent which makes it potentially suitable for
real-time applications, depending on the algorithms used. It is however not a framework
and thus lacks debugging helpers.

We are not aware about any previous work taking into account the real-time and low
performance-impact requirements for performance and power management. The real-
time requirement is important because decisions must be taken at a fast and constant
rate to react to changes in the user’s activity and its surrounding. The low performance
impact requirement matters because the resources taken by the decision engine cannot
be used to produce useful work for the end user and increase the power consumption,
which decreases the potential power savings made by the decision engine.

Decision engines found in the literature are usually written in high-level languages such
as MATLAB or linear-optimisation frameworks that are hard to bound in execution time
and RAM usage. These languages usually have a high performance impact on the CPU
and RAM usage compared to non-managed languages such as C. Genetic algorithms
have also been used and have, by nature, no execution time boundaries since they should
never converge. The best solution can however be selected at any generation which
makes it suitable for real-time requirements. To make the impact on CPU and memory
acceptable, a slow decision rate is mandatory which can be acceptable in some scenarios.
For instance, spending one second of computation time every 20 minutes would produce
an average impact on the CPU of less than 0.1%.

121

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

In this chapter, we propose a flowgraph for generic and run-time decision making that
follows the modularisation approach proposed by PISA for multi-variable optimisation.
This flowgraph has been implemented in a framework written in C which gets the best
potential for performance and efficiency. This framework focuses on allowing real-time
decisions for power and performance management while remaining generic-enough to not
constraint the decision-engine programmer. It also eases the development of a decision
engine thanks to its already-existing modules for the different stages and thanks to its
advanced debugging capabilities.

6.3 Definition of an abstract decision flowgraph

In this section, we propose the definition of an abstract and generic decision flowgraph
that is compatible with real-time requirements.

A decision flowgraph is needed when there are more than one independent way to
achieve the same goal, yet, they do not impact the power consumption and performance
in the same way. For instance, in the case of a multihomed mobile device, we could want
to take a decision whether to use the WiFi network interface or the cellular one. Taking
a decision requires a performance and power model (HW model) of both interfaces. With
these models, it should be possible to find the optimal configuration to balance the needed
performance with power consumption at any given time.

The hardware (HW) models are supplied with the user’s performance/QoS needs con-
tinuously so as it can self-optimise. Instead of feeding models with the immediate QoS
constraints to the models, we propose to feed them with a prediction of what will be the
evolution of the constraints and their expected variance.

Once a HW model outputs a decision along with its impact on performance and power
consumption, they should be compared with each others. In order to do so in an abstract
way, we propose that a score on every output metric of every HW model should be
generated and then aggregated into one score per HW model. All these information are
gathered in the same data structure and sent to the decision-making part that will decide
which HW model should be selected.

Our abstract decision flowgraph is composed of 5 stages:

• Metrics: Collecting metrics / performance needs;

• Prediction: Predicting the evolution of the metrics;

• HW models: Proposing the best decisions possible;

• Scoring: Scoring the output of the local decisions;

• Decision: Selecting the best HW model.

122

6.3 Definition of an abstract decision flowgraph

This decision engine flowgraph is considered generic because it does not force using
a single model with different parameters, unlike other decision engines in the literature.
This decision making model improves interchangeability and real-time-worthiness of a
decision engine. An overview of the abstract decision flowgraph is presented in Figure 6.9.
Each stage will be discussed in the following subsections.

Decision Flowgraph

Metrics Prediction Models

Scoring

Scoring_Model_1

Scoring_Model_2

Decision
M1 Predicted_M1

M2 Predicted_M2

Model1

Model2

Scored_M1

Scored_M2

Scored_M1

Scored_M2

Score

W(0)

W(1)

Decision

Score
W(0)

W(1)

Figure 6.9: Overview of the abstract decision flowgraph

6.3.1 Decision flowgraph

A flowgraph represents a decision process. It includes the 5 stages discussed before and
holds properties like the decision refresh rate. It can also run along-side other decision
flowgraphs to, for example, allow an application to select the most efficient network
interface while selecting the right performance level on the CPU.

6.3.2 Metrics

The role of the input metrics is to describe the current state of the system, including
the performance requirements. They are not limited in numbers and should be updated
periodically at a fast-enough rate to represent the current state and its variability. Poorly-
chosen metrics will produce poor predictions at the next stage which will result in a poor
decision quality. Examples of metrics could be the incoming and outgoing packets in the
network stack or the CPU usage.

6.3.3 Prediction

The objective of the prediction stage is to supply the expected evolution of the system’s
state for a given time span. The needed time span depends on how often a decision is
taken and how long it takes for a decision to be applied.

Prediction models may have multiple inputs of different types and generate multiple
predictions of different types. For instance, a prediction model could take as an input
the network packets received and predict the evolution of the reception throughput of
the network interface.

123

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

Predictions act as constraints and can be metrics-based (run-time information on the
state of the system) or static constraints. Static constraints can be used to express power
or performance constraints such as latency that the HW model should take into account
during its decision making.

The output of prediction models is composed of three graphs per prediction. The
first graph represents the expected evolution of the predicted metric while the other two
respectively represent the lowest and highest expected outputs for the metrics. These
three graphs allow representing both the average and the expected variance at any point
of the time span of the prediction.

Using graphs over mathematical formulas allows for a much more precise and real-
time-friendly intermediate representation for predicted metrics. First of all, interpreting
mathematical formulas at run time can be very CPU-intensive and linear optimisation
has execution time that is hard to bound. Moreover, graphs are much easier to generate,
read and score for a computer. They also represent the real expected evolution and, to
some degree, the density of probability at any point of the prediction.

Some prediction models are proposed in the next section.

6.3.4 HW Models

HW models of a flowgraph should all describe an independent way to carry out the
task that is needed by the user. They are user-provided, take the predicted metrics as
an input and output the expected impact on the predicted metrics/constraints. Every
output metrics of the models should be in the predicted metrics/constraints otherwise it
is impossible to score it.

HW models have to be independent so that selecting one does not change how others
calculate as this would require HW models to be aware of each others and this would
break the modularity of the flowgraph.

In the case of network interface selection, there should be one HW model per network
interface. All HW models would take the predicted network throughput along with
the RF occupancy and latency constraints. HW models should then try to produce
an optimal solution by selecting the right performance mode at the right time to have
the lowest power consumption possible while still meeting the throughput requirement
along with the latency and RF occupancy constraints. The HW models would then
output graphs telling the evolution of the expected power consumption, RF occupancy
and network latency in order to be scored.

The reason why there should be one HW model per interface and not per technology
is because one network interface may support different technologies, such as the WiFi
adapter also supporting Bluetooth, and they would not be independent.

124

6.4 Implementing the decision flowgraph in a framework

6.3.5 Scoring

The scoring stage is meant to score the different HW models, before sending the result
to the decision engine. The HW model’s score is bound in [0, 1] and is calculated based
on the score of sub-metrics. Every sub-metric is assigned a weight that defines the
importance of each metric (W (0) and W (1) in Figure 6.9). These weights need to be
defined by the application. Scoring blocks can be user- or framework-provided.

6.3.6 Decision

The final stage of the decision process is selecting the most appropriate HW model and
switching to it. The decision stage receives the scores of every HW model and metric,
the HW models’ output and the predictions. It is then responsible for evaluating the
transition costs on performance and power consumption so as to avoid ping-pong effects
that would be damaging to both the battery life and the QoS.

6.4 Implementing the decision flowgraph in a framework

In Section 6.3, we proposed a flowgraph for a generic run-time decision engine. We
have implemented this flowgraph into a framework in order to test it and make writing
decision engines easier. We named this framework “Real-Time Generic Decision Engine”
(RTGDE). Its implementation is available publicly [165].

This framework should not impede the implementation of a real-time decision process
due to the framework’s pipeline nature and the fact it barely does any processing at all
except passing information from stage to stage. It should thus be possible to create a
soft real-time decision engine as long as the predictions, HW models, scoring and decision
algorithms used can have their execution time bound.

In this section, we detail the most important design constraints we had at the different
stages of the decision pipeline.

6.4.1 Metrics

Run-time metrics collection and decision suggests multiple threads must be used to
separate both processes. A cross-threads synchronisation is thus needed to allow the
producer (metric collection) thread to send information (metrics values) to the consumer
(prediction) thread. The use of a ring buffer, along with the usage of a mutex per metric,
solves this communication problem. It is shown on Figure 6.10.

6.4.2 Predictions

Predictions take the metrics attached to them and output three graphs which are
respectively the average, lowest and highest prediction over time. Graphs are used instead
of formulas to ease development and make it easier to reach real-time guarantees.

The RTGDE framework aims at shipping multiple generic prediction engines. Cur-
rently, we have implemented the following ones:

125

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

Get

Put

Get

Put

Prediction

Thread 1

Thread 2

Decision

Thread

Metric 1

Metric 2

Figure 6.10: Using ring buffers to implement asynchronous communication between metrics
collection and metrics prediction

• Simple: Equivalent to no prediction at all, it just outputs the latest value of the
metrics;

• Average: Computes the average and the variance of the metric, outputs the average,
the lowest and the highest predictions based on a confidence level and the variance
if the metrics follows a Gaussian;

• FSM: Considers the metric follows a Finite State Machine (FSM) with associated
properties such as power consumption or throughput. The FSM prediction learns
the density of probability to transit from one state of the FSM to an other and uses
this knowledge to output the expected evolution of the metric. This prediction
technique works for periodic signals but requires a very high sample rate at the
metrics.

To evaluate the need for an FSM prediction, we looked at GPU usage in different
scenarios. We proposed two states, the GPU would either be active or idle. To get the
GPU’s state, we continuously polled at 3.8 MHz (as fast the PCIe port would let us poll)
on NVIDIA’s status register for the main engine (PGRAPH.STATUS, address 0x400700,
bit 0).

(a) IDLE 7→ ACTIVE transition (b) ACTIVE 7→ IDLE transition

Figure 6.11: GPU Usage: Probability density of transitioning from one state to another
while running a highly predicable GPU load (glxgears)

126

6.4 Implementing the decision flowgraph in a framework

In the first scenario, shown in Figure 6.11, we ran a very simple and predicable 3D
application called glxgears. We can see several spikes in the density of the switching
probability from one state to another. This denotes a high regularity in the switching
period and means the FSM prediction method is appropriate for such an input metric
and application.

(a) IDLE 7→ ACTIVE transition (b) ACTIVE 7→ IDLE transition

Figure 6.12: GPU Usage: Probability density of transitioning from one state to another in
a web browsing scenario

In a second scenario, shown in Figure 6.12, we analysed the state transitions when
watching a youtube video in 360p. The ACTIVE 7→ IDLE transition’s density of prob-
ability have more diracs indicating a predicable rendering time. However, contrarily to
Figure 6.11, the IDLE 7→ ACTIVE transition’s density of probability is more diffused but
shows 6 different bumps. This may suggest that either there are several periodical events
triggering GPU usage with their update frequency not being harmonics and in phase,
or there is a periodical event (rendering frames at 25 FPS) along with one or multiple
a-periodical events.

(a) IDLE 7→ ACTIVE transition (b) ACTIVE 7→ IDLE transition

Figure 6.13: GPU Usage: Probability density of transitioning from one state to another in
a web browsing scenario

Finally, we repeated the experiment in a web browsing scenario, shown in Figure 6.13.
Unsurprisingly, given the aperiodical nature of the GPU load when web browsing, the

127

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

IDLE 7→ ACTIVE transition’s density of probability is very spread. The GPU’s process-
ing time was also more spread than in previous figures.

As can be seen from the previous figures, the FSM prediction only works when moni-
toring a single process that can be modelled by a finite state machine, like in Figure 6.11.
When multiple processes are running concurrently, the process with the shortest pe-
riod creates aliasing. If the signals are not in phase, they create what seems like white
noise in the transition’s density of probability which makes any prediction useless. The
implementation of this prediction technique is however not finished but the results are
encouraging-enough to make it worth finishing up the implementation.

Since every application has different needs, it may not be accurate to use generic
prediction models. It is thus important to allow for user- along with framework-supplied
prediction models. We decided to make it as easy as possible to do so. This means the
internal interface should be exposed to the application in order to interface with it.

Constraints are considered as static predictions and define how to score the HWmodel’s
output metrics that are linked to it. For instance, the power consumption constraint of
a model can be set so as the maximum score is achieved when the power consumption is
0 mW, the minimum score when drawing 3 W and the average score when consuming 1
W. Score is attributed linearly between these points.

Applications may require the prediction to be dumped along with the metrics data
that was used to generate it. Predictions are then dumped as a Comma-Separated
Values (CSV) file and a user-defined callback is called to allow the application to process
this data. Figure 6.14 was generated using gnuplot [166], called from the user-defined
callback of the pcap example located at ’/tests/pcap/’ in [165].

Figure 6.14: Example of the output of the “average” prediction method

128

6.4 Implementing the decision flowgraph in a framework

In this Figure, each point of “Packets” represents a received packet (size and time
of arrival). The packetSize prediction low/average/high represent the output of the
prediction stage concerning the packet size. In this example, it is not expected to change
during the prediction period so the lines are flat.

6.4.3 Flowgraph

Prediction and HW models are attached to a flowgraph. Whenever the flowgraph is
run, all the predictions algorithms generate the inputs for the HW models which are then
called serially with a copy of the input metrics. They could however be run in parallel
on multi-core processors to lower the execution time of the flowgraph.

6.4.4 Scoring

There is currently only one scoring algorithm implemented in the framework. The
equation used to compute the HW model’s score is given in Equ. 6.1 where Sm(i) is the
calculated score of the metric i while W (i) is the weight given to the metric i and n is
the number of metrics to be scored.

Score =

∑n
i=0 Sm(i) ∗W (i)
∑n

i=0W (i)
(6.1)

The function Sm(i) is calculated by integrating the probability that the proposed result
on the metric i is lower (or higher, depending on the metric) than its prediction at time
t (pi(t)), over time 0 to the prediction time-span (T).

Sm(i) =

∫ T

t=0 pi(t).dt

T
(6.2)

Like for predictions, an application may require the scoring output to be dumped to a
CSV file before calling a user-defined callback. Figure 6.15 is an example of the output
of the default scoring method on the power consumption metric.

Figure 6.15: Example of the output of the default scoring method

129

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

This figure is akin to Figure 6.14, except it is a power consumption constraint instead
of a packet size prediction. We can also find an additional line (red) which represents the
expected power consumption of the “radio-gsm” HWmodel. Finally, the decision impact,
shown in light yellow, represents the difference between the ideal power consumption
(power prediction low) and the expected power consumption.

6.4.5 Decision

We provide as much information as possible to the decision algorithm. This includes
predictions and HW models outputs along with their scores.

Once a decision is taken, a user-defined callback is called with the result of the decision
and all the information that was used to take it. As this call is currently made from the
flowgraph thread, the application should not block.

6.5 Evaluation

In this section, we evaluate the genericity of the flowgraph and our framework by
implementing two common use-cases for decision engines in green networking. We then
evaluate the performance of the framework.

6.5.1 Network selection WiFi / GSM

As most of the decision engines in the literature are used for selecting network inter-
faces based on QoS and/or power efficiency, we decided to evaluate the framework by
implementing a simple WiFi / GSM network interface selection.

The throughput requirement and expected packet count are predicted in real-time by
sniffing the network traffic in the network stack, using libpcap [167] (the library used
by tcpdump and Wireshark). In this experiment, the network activity was generated by
browsing the web. The following constraints are set (Highest/Median/Lowest score):

• Power consumption: (0, 500, 3000 mW);

• RF spectrum occupancy: (0, 50, 100%);

• Latency: (0, 5, 10 µs).

For every decision, 2 predictions (Packet Size and Packet count) and 3 constraints
(Power consumption, Radio Frequency (RF) occupancy and network latency) are gener-
ated. Both HW models then generate 3 outputs each for every decision. Given an update
rate of 1 Hz, we get 11 CSV file every second. It is thus not practical to include all of
them in this thesis. Examples of outputs would be Figure 6.14 (output of the prediction
for the “packetSize” metric) or Figure 6.15 (output of the scoring block for the “power
consumption” constraint).

130

6.5 Evaluation

TheWiFi and GSM radios are using the same HWmodel but with different parameters.
The parameters are the name of the radio, its bitrate, the energy cost and delay to
switch from reception (RX) to transmission (TX) and TX to RX and then, the power
consumption when receiving and when transmitting. Those parameters are very simple
and are not accurate as they do not take into account GSM and WiFi link quality. They
are however sufficient to prove the genericity of the decision flowgraph and the framework
as we are only demonstrating how the framework can be used and not evaluating the
decisions taken by the engine.

The scoring technique is the one proposed earlier with the metric “Power consumption”
(Figure 6.16) given a weight of 20, “Emission latency” (Figure 6.17) given a weight of 5
and “RF occupancy” (Figure 6.18) given a weight of 3. These weights should be defined
according to the user’s strategy and motivations. It is out of the scope of this thesis.

Figure 6.16: Evolution of the power consumption score of the two HW models

Figure 6.17: Evolution of the emission latency score of the two HW models

The decision to use the GSM model over the WiFi model is given if the following
conditions are fulfilled:

131

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

Figure 6.18: Evolution of the RF occupancy score of the two HW models

• The average score of the GSM model in the last 30 seconds is higher than the WiFi
model’s score;

• The emission-latency average score of the GSM model in the last 30 seconds is
higher than 0.9. This means the GSM’s throughput is sufficient for the current
load;

• The latest network interface switch happened more than 10 seconds ago.

As stated before, this will not yield a good decision but it is sufficient to prove the
flexibility of the approach. The decision policy should be set according to the user’s
strategy. The final score of both HW models along with the decision result is shown in
Figure 6.19.

Figure 6.19: Evolution of the score of the two HW models along with the decision

All these graphs have been generated at run-time using the logging and callback ca-
pabilities of the framework.

132

6.5 Evaluation

In this evaluation, we proved it is possible to implement a network interface selection
at run-time using our proposed generic flowgraph.

6.5.2 Selecting performance levels and processors

The second evaluation of the framework we performed was CPU performance level
and core selection on a smartphone equipped with a big.LITTLE processor [143], where
half the cores are optimised for speed (BIG) and the other half is optimised for power
consumption (LITTLE). The decision engine’s role is to select which set of cores and per-
formance level should be used for the applications currently running on the smartphone.
It’s input metric is the CPU usage which gets predicted using the “average” prediction
system. as illustrated by Figure 6.20.

Figure 6.20: Evolution of the CPU usage metric and one prediction

In this figure, we can see in green the evolution of the CPU usage in the last 800
ms. We can then see the result of the prediction stage with the low, average and high
predictions shown in the different shades of blue. The result of the model is shown in red
and the impact on the impact on the metric is shown in yellow. The score of the model
for this metric is 0.812.

Each set of cores (BIG or LITTLE) has 3 different performance levels. A performance
level is defined by:

• Static power consumption: idle power consumption;

• Dynamic power consumption: power consumption added when 100% active;

• Performance: Maximum performance relative to the fastest performance level of
the BIG core.

The LITTLE cores have the following performance levels:

• 0: Static = 10 mW, Dyn. = 200 mW, Perf. = 0.1;

133

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

• 1: Static = 15 mW, Dyn. = 300 mW, Perf. = 0.2;

• 2: Static = 25 mW, Dyn. = 500 mW, Perf. = 0.3.

The BIG cores have the following performance levels:

• 0: Static = 100 mW, Dyn. = 800 mW, Perf. = 0.25;

• 1: Static = 125 mW, Dyn. = 900 mW, Perf. = 0.63;

• 2: Static = 150 mW, Dyn. = 1000 mW, Perf. = 1.0.

Figure 6.21: Evolution of the performance level used by the LITTLE model

We propose to use two HW models, one for the BIG set of cores and one for the
LITTLE set of cores. BIG and LITTLE cores are handled using a single HW model with
different parameters (name and performance levels). Performance levels are selected by
both HW models while the set of cores to be used is selected by the decision process.
In Figure 6.21, we can see the selected performance levels for the LITTLE model across
the experiment with 0 being the slowest performance level, 1 the median one and 2 the
fastest one. Figures 6.22 and 6.23 respectively represent the evolution of the score for
the performance impact / CPU usage and the power consumption score. The power
consumption score comes from a static constraint set to 5/125/1000 mW (low, median,
high).

The power consumption constraint is given a scoring weight of 10 while the performance
impact score is given a weight of 13. The weights need to be adjusted according to the
user’s strategy.

The decision policy is entirely based on the score of the two HW models. If the current
model is LITTLE and if the score of the BIG model is 20% higher than LITTLE’s score
then the BIG model is selected. On the other hand, if the current model is BIG and
the LITTLE’s score has been 10% over the BIG’s 5 times without the LITTLE’s score

134

6.5 Evaluation

Figure 6.22: Evolution of the CPU usage score for the two HW models

Figure 6.23: Evolution of the power consumption score for the two HW models

dropping lower than 20% of the BIG’s score, then the LITTLE model is selected. A
decision is taken twice per second which is slow enough for performance- and power-cost
of the migration to be negligible. Figure 6.24 presents the evolution of the score of the
two HW models along with the proposed decision.

6.5.3 Performance evaluation

The previous experiment, without CSV outputs and graphs generation, used approx-
imately 296 kB of RAM on our system (Arch Linux x86 64) with a further 796 kB of
libraries shared with other programs (libc, libglib, ld, libm, libpthread, libpcre, libXau).
The actual memory footprint of RTGDE library is however just 36 kB and the volume
of data created by the framework for this experiment is lower than 56 kB. Most of the
remaining memory footprint of this experiment comes from the libgtop that was used to
collect the CPU usage metrics, the libc and the stack allocation for the two threads of
the process.

135

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

Figure 6.24: Evolution of the score of the two HW models along with the decision

We also experimented with the CPU usage impact of the RTGDE framework in this
evaluation and found that we had to increase the decision rate from 2 to 100 Hz to
produce a visible impact on CPU performance of 2% on one core of our i7 860. One
iteration of the decision process takes 43.95 µs in average with a standard deviation of
13.19 µs.

We decided to compare the memory usage and real-time worthiness of our proposition
compared to MATLAB as it has often been used by researchers to implement decision
engines [161][160]. We compared our proposition on Linux using GNU Octave which
is an open source alternative compatible with MATLAB. To compare our proposition
and an implementation made in Octave, we wrote the minimum application possible
that executes code one thousand times per second in our proposition and in Octave,
respectively found in [165] under the name “test minimal.c” and “matlab min.m”.

To test the real-time worthiness of the two solutions, we compared the delay between
the moment when the application requested to resume execution, called scheduling jit-
ter, and the standard deviation of this jitter over 30 seconds when our testing Linux
system was idle. The results highly depend on the CPU scheduler but also reflect any
additional overhead the language is putting on real-time constraints. They are visible
in Figure 6.25 where we can see that Octave’s jitter is almost 50% higher than the one
found in the C language used to implement our framework. Octave’s standard deviation
in the scheduling delay is more than 60% higher than C’s.

0 20 40 60 80 100 120 140 160 180 200

RTGDE

Octave

Scheduling jitter (µs)

Figure 6.25: Jitter in the scheduling of decision process on Linux. Data collected during
30 seconds when the system was idle.

136

6.6 Conclusion and future work

In the second test, we measure the memory usage of both solutions and split it in two
categories. The “shared” memory usage comes from the different libraries used by both
solutions, named this way because they can be shared in memory with other processes.
On the contrary, the “private” memory usage is memory which is exclusively used by
the program. The results of this test can be found in Figure 6.26 where we can see
that Octave’s private memory usage is 25.3MB along with 7.4MB worth of libraries that
could be shared with other processes. On the other hand, our proposition has a private
memory footprint more than 150 times lower (168kB) than Octave’s while its shared
memory footprint is more than 15 times lower (1.4MB).

0 0.5 1 1.5 2 2.5 3 3.5

·104

RTGDE

Octave

Memory usage (kB)

Private Shared

Lower is better

Figure 6.26: Minimum memory usage when using RTGDE or Octave to implement the
decision engine

A comparative performance evaluation of MATLAB and C++ was carried out for plot
generation and it was found that C++ was faster and more versatile [168]. C being a
sub-set of C++, it should share the same characteristics.

Through this evaluation, we demonstrated that it is possible to implement a complex
performance level selection at run-time on an heterogeneous CPU architecture by using
our proposed flowgraph and framework. We also demonstrated that the framework’s CPU
and memory footprint can be negligible, even for mobile devices, contrarily to solutions
found in the state of the art which are mostly based on MATLAB.

6.6 Conclusion and future work

In this chapter, we motivated the need for an OS-driven power and performance man-
agement system, even when using autonomic components, as defined in Chapter 5. The
role of this OS-driven power management system is to model the power and performance
of the processors, accelerators and network interfaces found in the computer in order to
fulfil the user’s task as efficiently as possible while still meeting the wanted performance.
Energy savings of up to 80% can be achieved by selecting the right processor type in a
big.LITTLE scenario or by selecting the right network interface in a typical smartphone
with a WiFi, GSM and 3G interface.

The most accurate power and performance models for network interfaces and processors
are very dependant on the hardware they model. In order to compare them, their inputs
and outputs need to be standardised, as proposed by PISA [164]. However, PISA has not
been designed for run-time decision making. It can be used to implement efficient power

137

6. OS: MAKING REAL-TIME POWER MANAGEMENT DECISIONS

and performance models but it lacks different stages that allow for decision making in
real-time such as collecting metrics in different threads.

In this chapter, we proposed a generic flowgraph for run-time decision making that
allows code re-usability by specifying different stages and their interfaces. It also allows
creating decision engines using many different power and performance models as long
as they share the same output interface. We then implemented this generic flowgraph
into a framework and evaluated it by successfully implementing run-time algorithms for
network interface and CPU type selection in a big.LITTLE environment.

On Linux, the RTGDE framework we proposed requires less than 58kB of storage
memory, uses less than 100 kB of RAM for typical flowgraphs and has virtually no impact
on CPU performance when not generating gnuplot graphs in real time. This is to be
compared with other solutions used in the state of the art such as MATLAB that can use
up to 150 times as much RAM as our proposition. The low CPU and memory requirement
makes this decision flowgraph and framework very suitable for mobile devices. The
implementation of this framework has been achieved in about 4000 lines of C code with
only one mandatory dependency to pthread and is available publicly [165] under the
Open Source MIT license.

Such a framework could be used to write an efficient power management daemon that
would tell the Operating System’s kernel which network interface and which set of core
should be used at any time. Power and performance models could be added to the daemon
by hardware manufacturers and power efficiency hobbyists thanks to its open nature. The
daemon could then probe which hardware is available, load the right modules, collect the
right metrics and select the most efficient way of performing the user’s task.

This flowgraph is meant for system-level power and performance management such as
migrating all applications to the same cores or selecting the most appropriate network
interface for the whole system. This flowgraph is not suitable for scheduling multiple
tasks onto multiple resources. Such scheduling is currently left to the Operating System
and will be investigated in future work.

Other future work include adding more generic prediction algorithms, evaluating the
flowgraph on more scenarios and writing tools to help generating the code for setting up
the prediction engine. Thanks to the modular nature of the framework, a website could
also be written to allow researchers to share their prediction algorithms or HW models
for radios, CPUs or GPUs to allow direct comparisons between models or scoring systems
in research or to limit the amount of code that needs to be written to set-up a prediction
engine. Currently, researchers have to implement HW models for every hardware used
in their decision-making. Predictions could also be scored by RTGDE and be used to
automatically select the most-accurate prediction system. The score could also help
debugging poor prediction issues.

138

Chapter 7

Proposing a green network for
disaster relief

Contents

7.1 Defining the scenario . 139

7.2 Defining wireless nodes : network and system architecture . 140

7.2.1 Node type 1 : Aerial drones . 142

7.2.2 Node type 2 : A fully autonomic wireless tablet 144

7.2.3 Node type 3 : An extremely low-power wireless sensor node . . 145

7.3 Radio frequency : Continuously selecting the best RF bands 147

7.4 Hardware requirements : Performance and availability 149

7.4.1 Network . 150

7.4.2 Processors and accelerators . 151

7.4.3 Other peripherals . 152

7.5 Conclusion . 153

In this chapter, we discuss how we can combine the different contributions we de-
scribed in this thesis to create an energy-efficient heterogeneous wireless network to help
a rescue team to organise itself in a disaster relief scenario to save civilians.

7.1 Defining the scenario

In a disaster scenario such as the one that happened in New Orleans after the hurricane
Katrina (2005), most of the infrastructure is not usable anymore. The roads are blocked
and the electricity, water and telecommunication infrastructure are gone.

Upon arrival to the disaster site, the rescue team first requires an aerial view of the the
area to identify roads that need to be cleared to facilitate the access to buildings with
potential survivors who need to be rescued. The aerial view also needs to be matched
to preexisting maps and should be made available to most members of the rescue team.
These maps are meant to be annotated by the rescuers and updated in real time. Example
of annotations could be the level at which a building has been inspected, the number of

139

7. PROPOSING A GREEN NETWORK FOR DISASTER RELIEF

survivors trapped or the potential hazards found in different areas (explosives, chemical
leaks, others).

The rescuers’ terminal used to access shared data should be a tablet because of its
big screen that allows discussing with multiple people and because of its versatility. It
should also allow rescuers to text, voice or video chat with each others. It should also be
available at all time for a minimum of 12 hours and be easily replaceable without loss of
data when the battery is drained or if it gets broken.

Victims trapped on their rooftops or in the ruins of buildings should be able to contact
the rescue service as fast as possible in order for it to prioritise the rescue missions based
on their severity and their number of victims. Victims may also need first-aid training
over the phone along with medical equipment until a rescue team arrives. Finally, some
victims may like to record a testament and farewell messages for their friends and family
if they feel like they are not going to make it out alive.

7.2 Defining wireless nodes : network and system architec-
ture

In a disaster scenario, preexisting communication infrastructure may not be available
anymore, either because victims would jam all the communication services by trying to
communicate to their friends and families or because the disaster cut down power and/or
the optic fibres.

In such a situation, rescue missions should be allowed to re-use the licensed spectrum
of non-vital services in order to provide the most reliable communication possible by
decentralising them and selecting the least crowded frequency bands. This would pro-
vide the communication resilience needed by the rescue service to operate safely and
efficiently. The list of usable bands in such a scenario should be selected by the state’s
telecommunication regulation organism and made available to the rescue service.

To further increase the reliability of the network, rescuers’ tablets should be able to
communicate with each others in a peer-to-peer fashion to form a meshed ad-hoc network.
To extend the range of the transmissions, vehicles could have a high-power radio with a
multi-kilometres range. Likewise, when some rescuers are cut from the network or are
going to be, a relay drone could be flown to make sure the network stays connected while
waiting for a terrestrial relay to be deployed.

Software-defined radios could allow the rescue teams to communicate with each others
without needing to pre-allocate spectrum that may or may not be available everywhere in
the disaster zone. Indeed, the contributions from Chapter 4 allow the different network
nodes to find each others and to react to spectrum perturbations to keep communications
going and exporting several services on different spectrum bands.

140

7.2 Defining wireless nodes : network and system architecture

To minimise latency, long-distance relay nodes should agree on using the same central
frequency for communicating. This allows transceivers with different bandwidth capabil-
ities to communicate at the maximum rate possible as they can use the entire bandwidth
of the slowest radio. As frequency bands closer to the central frequency can be used
by more devices, when a packet needs to be sent, a frequency band as far away as the
central frequency should be allocated. The actual distance will depend on the current
spectrum usage and the receiver/transmitter capabilities which are known thanks to the
beaconing system. Relay nodes should also select the next central frequency that should
be used in case the frequency band gets perturbed too much by radios external to the
network. In case of a total jamming of the frequency band, relays can re-initiate a search
for surrounding relays before agreeing a new central frequency again. Here is an example
of beacon for a relay node:

<beacon_frame>{ node_id=xxx, tx_pwr=30dBm,

[

{ {band_relays}, len=1.0, period_offset=0.0 },

],

period=1000ms, cur_period_offset=0.3 }

Tablets should periodically be available on the relay’s central frequency to allow long
distance communications. This frequency band could also be used by two tablets to
allocate a frequency band on demand when they need to exchange a lot of data. The
rest of the time, the tablets’ radio should be off to save power. Synchronisation between
nodes is made possible thanks to the beaconing system introduced in Chapter 4.

Depending on the number of relays between the emitter and the receiver, the band-
width and latency of the transmission will vary. A route thus needs to be selected
according to the needed QoS. Such a network could thus accommodate the rescuers’
need for constant connectivity, text/voice/video communication and live update of the
maps and annotations on it.

The central command should be able to locate rescuers to dispatch the closest rescuers
when an emergency such as a cardiac arrest of a victim arises. This means the rescuers’
tablets should make their position known periodically. This traffic can be used by the
network layer to gain some insight about the network topology without being proactive.

A geographic routing protocol such as GRP should then be used to find the shortest
path from one node to the other. The localisation of the nodes can be acquired in a cross-
layer fashion by a relay by analysing the packets containing the current GPS location
of a node. This is possible because the relays should know their position and mobile
users know the position of the central command. The GPS position packet of a node will
thus always find its way to the central command and will force the relay nodes along the
way to update their routing tables. A relay that did not receive a GPS position packet
from a node for a long time should thus redirect packets to a relay closer to the central
command.

141

7. PROPOSING A GREEN NETWORK FOR DISASTER RELIEF

To further improve the relays’ routing decisions, we propose that they should be aware
about which relays they can contact to access every node in the network along with
their respective theoretical maximum bandwidth and maximum latency. To keep the
relay topology up to date, the relays could rely on the periodic beaconing system to
detect when a new relay has become active or when a neighbouring relay has suddenly
become inactive. When a relay detects a new node or detects that one of its neighbour
has disappeared, it should broadcast this information to all the relay nodes for them to
update their routing table.

7.2.1 Node type 1 : Aerial drones

Figure 7.1: SenseFly Swinglet CAM: An autonomous aerial imaging drone [13]

When arriving on a disaster site, rescuers should first map the surrounding area to
evaluate the extent of the damages and to avoid putting the the rescuers’ life in danger.
The fastest and simplest way of doing so is by launching a wireless aerial drone, like the
one seen in Figure 7.1, that will autonomously map the area. This new map could be
added as a layer to maps prior to the disaster for comparison and to re-use street names
when possible instead of coming up with new names for every street. Photos could be
downloaded in real time from the drone to reconstruct a 3D model of the area [169].
Drones may keep on patrolling to look for survivors and fire outbreaks.

The drone may also carry a GSM base station to allow victims to contact the rescuers
using their cellphones like they would in a more typical emergency. Drones could also
broadcast text messages to all cellphones in their vicinity to inform them of the current
situation and give them instructions. More importantly, active cellphones trying to
authenticate onto this mobile GSM base station could allow mapping and tracking the
position of the civilians. This could also speed up the discovery of unconscious victims,
the recovery of deceased people and their identification. The OpenBTS project [170]
is already able to provide a software-radio-based GSM base station that could achieve
this goal with the help of wireless telecommunication providers to allow their users to
automatically connect onto those.

Long-term stationary drones such as balloons or circling planes could also be used as
a relay in the mesh ad-hoc network in order to increase the reliability and bandwidth

142

7.2 Defining wireless nodes : network and system architecture

Figure 7.2: Google Loon Project: Providing Internet access to a large area [14]

for long-distance calls in the disaster area. Google has been working since 2013 on using
balloons flying at 20km of altitude (twice as high as commercial jet flights) to bring
Internet everywhere around the globe. This project, named project Loon [14] and shown
in Figure 7.2, is being tested successfully in New Zealand.

Drones could also be used for urgent package delivery such as medical supplies. A
rescuer could ask for the delivery through his/her tablet, a drone would then fly to a
supply tent to be fitted with the package. The drone would then fly to the rescuer who
issued the request by first going towards the GPS location from which the request was
made. When the drone would become in range of the rescuer, the drone will request a
landing/dropping zone on the rescuer’s tablet. This is possible because the drone and
the rescuer’s tablet could find each others and because they share a map that allows the
user to point where the drone should deliver the package. Because the drone knows its
position and the current topology, it could also deliver the package at the safest position
close to the rescuer if this one is too busy to answer the drone’s request. An example of
such a drone is presented in Figure 7.3.

Figure 7.3: Amazon Prime Air: A commercial drone delivery proposed by Amazon [15]

This urgent delivery service could also be directed to civilians that can not yet be
reached for the rescuers. The drone could identify the cellphone that requested the
delivery and drop the package close to its current location.

143

7. PROPOSING A GREEN NETWORK FOR DISASTER RELIEF

Thanks to out node discovery mechanism, drones could avoid collisions between them-
selves by broadcasting their flight direction and current GPS position like commercial air
planes do. Rescuer vehicles such as helicopters should also be fitted with such a system
to make sure no drones would cross its path. This discovery mechanism running on soft-
ware radios also provides a cognitive behaviour to relays by allowing them to dynamically
select white spaces for their communications.

7.2.2 Node type 2 : A fully autonomic wireless tablet

Figure 7.4: An example of rugged tablet that could be used by rescuers [16]

The second node type is the rescuer’s mobile terminal we referred to as “tablet” earlier.
It is used by rescuers to view up-to-date maps, access map annotations (safety, work to
be done, potential victims and their needs, etc...), and communicate with other rescuers
and victims by text, voice or video. It is also used to communicate with wireless sensors
of all sorts and should finally be able to take pictures and videos for press and archive
purposes. The tablet would resemble the one shown in Figure 7.4.

The tablets should also be able to communicate with other tablets either directly if
they are close-enough, or by using relays. In the absence of a relay, other tablets may
relay data to and from the nearest one terrestrial or aerial relay.

Since tablets are not personal, may run out of battery or get damaged, data such as
video or audio recordings, should be duplicated on multiple devices until it reaches a
cloud service which can guarantee its availability. This should however be avoided as
much as possible to reduce the battery drain on other tablets.

Software radios are the perfect candidate to fulfil all these network requirements. In-
deed, just like for the relays, we need tablets to be able to identify collaborating nodes in
their surroundings. They also need to be able to evade crowded or perturbed frequency
bands while also being able to change all their PHY and MAC parameters to match their
receiver’ and QoS’s requirement. This is critical to be able to communicate with wireless
nodes using hardware radios. Finally, the beacons we proposed in Chapter 4 allow radios
to be put in a sleep mode most of the time when not in use.

144

7.2 Defining wireless nodes : network and system architecture

In the following example beacon, the radio is not really used by the rescuer which
means it can save power by powering itself down. The radio has a cycle of 1 second
where 50 ms (5%) are used to communicate with the wireless sensor network that will be
defined in the node type 3, 100 ms (10%) are used to be available to the relay network
in case an incoming connection happens and then it can sleep for 850 ms:

<beacon_frame>{ node_id=xxx, tx_pwr=10dBm,

[

{ {band_WSN}, len=0.05, period_offset=0.0 },

{ {band_relays}, len=0.1, period_offset=0.05 },

],

period=1000ms, cur_period_offset=0.08 }

In this other example beacon, the radio is used at its maximum capacity to communi-
cate through a relay. The radio is thus available to the relay for 95% of the cycle.

<beacon_frame>{ node_id=xxx, tx_pwr=10dBm,

[

{ {band_WSN}, len=0.05, period_offset=0.0 },

{ {band_relays}, len=0.95, period_offset=0.05 },

],

period=1000ms, cur_period_offset=0.16 }

7.2.3 Node type 3 : An extremely low-power wireless sensor node

(a) Deployment of a PIR
sensor

(b) Deployment of a seismic
sensor

(c) Deployment of a SPIRIT
sensor

Figure 7.5: Example of wireless sensor nodes that could be used in a disaster area

The third and final node type is a low-power wireless sensor node. It’s role is to enhance
the safety of rescuers by monitoring the air and look for potential looters who may enter
dangerous areas and gravely hurt themselves.

This node type can enhance the safety of rescuers by monitoring the air in search of
dangerous gazes, may they be explosive or toxic. Indeed, in a flooding scenario involving
tidal waves such as when a tsunami happens or when a levee breaks, gas bottles from

145

7. PROPOSING A GREEN NETWORK FOR DISASTER RELIEF

a clearly advertised site may be transported over multiple kilometres to seemingly non
dangerous areas. These bottles may then start leaking and releasing potentially-toxic gas
in the atmosphere. At the right concentration, the gas may even detonate and potentially
kill some rescuers or innocent by-standers.

One air-monitoring node should be placed onto each rescuer for his/her immediate
protection. These nodes would communicate with the rescuers’ tablet. However, to
lower their power consumption, they would only start transmitting on a pre-established
frequency when there is a problem to find the rescuer’s tablet. Other transmitters are
unlikely to be able to jam the transmission because of the proximity between the node
and its receiver. Tablets should thus be available on this band periodically. Finally, the
node could also beep more or less loudly to inform immediately the rescuer about the
danger level. The number of beeps could also indicate the type of danger.

If a node does not detect any above-normal concentration of any gas, the radio should
be put to sleep constantly. When it does, it should enable its radio in receive mode to
check if surrounding sensors are not sending alerts. If this is the case, the node should
emit a special beeping pattern to let the rescuer know that a potential danger is here.
The node should however not send any packet until the concentration reaches a dangerous
level so as this pre-danger warning does not spread too far away from the leak’s source.
This solution creates a very simple correlation mechanism between mobile sensor nodes
without consuming power at all when such correlation is unnecessary.

Looting is a frequent problem in a disaster site and it is difficult for law enforcement
to prevent looters from entering the disaster area. Keeping them out of danger zones
should become a priority a few days after the disaster. Secondly, detecting looters in
residential areas could help law enforcement to prevent theft. A wireless sensor network
composed of multiple wireless nodes and heterogeneous sensor types such as infrared
barriers (SPIRIT) and seismic sensors (both seen in Figure 7.5) could detect looters and
identify their type.

Deploying the network should be extremely easy. Nodes should thus be made as small
as possible and no configuration should be required aside from assigning them an area
and then adding them in the Command and Control application at their GPS coordinate
and orientation. This can easily be done by the rescuer installing the wireless sensor by
using his/her tablet during the deployment.

Because this node type has a very predicable network behaviour, there is no need for
advanced cognitive behaviour that would require any special hardware. Since the network
should be silent most of the time, nodes willing to communicate can emit a long preamble.
If other nodes check for the presence of a preamble with a period slightly lower than the
preamble time, they will always be able to detect transmissions and receive them. If no
preamble is present, the radio can be put back to sleep immediately to save power. This
saving however comes at the cost of latency and throughput.

146

7.3 Radio frequency : Continuously selecting the best RF bands

Our contributions introduced in Chapter 3 allow for an easy deployment, reduce the
number of messages exchanged to increase the battery life while our correlation mech-
anism would reduce false positives and negatives and would also autonomously be able
to detect faulty sensors and isolate them. Our introspection mechanism coupled to our
GUI called Diase also allows network administrators to check that the network is op-
erating properly. Finally, an automatic response such as sounding an alarm, playing
an automated message and/or taking pictures of the intruders is also possible with our
contributions to scare the looters off.

Tablets may detect this network thanks to the nodes heartbeats needed by the cor-
relation node to make sure all sensors are still available. A tablet could then join the
network by following the same procedure the sensor nodes used to add themselves to this
wireless sensor network.

7.3 Radio frequency : Continuously selecting the best RF
bands

In Figure 7.6, we introduce a waterfall view of the RF spectrum as seen by a relay in
the proposed network.

0

1

T
im

e
 (

s
e
c
o
n
d
s
)

Central

Frequency

Keymap

WTS frame

RTR frame

RTS frame

CR data frame

PU data frame

Radio Frequency Spectrum

Beacon frame

Figure 7.6: Example of the spectrum usage done by relays in the proposed network

In blue, we can see the beacons of 4 different nodes, 3 of which have a 25 MHz band-
width while the last one has a 15 MHz bandwidth. All the nodes send 3 beacons at a
time every 10 ms. In red, green and purple, we can see the MAC-layer controlled frames
we proposed to allocate spectrum. These frames can be followed by an orange frame
containing the actual data frame. A relay may not receive the RTR frame if it is far
away from the receiver. Likewise, it may only receive the RTR frame if it is too far away
from the emitter. Some non-collaborating nodes that could potentially be primary users
may also use the spectrum to send frames. These frames are shown in dark grey.

147

7. PROPOSING A GREEN NETWORK FOR DISASTER RELIEF

When the frequency band used by the relay nodes becomes too congested by non-
collaborating nodes, nodes should start to dedicate some time to sensing the other bands
allocated to non-vital services to extract usage statistics on the bands’ type of usage
(periodicity, length and width of the transmissions).

The selection process of the RF band to be used for communication can be done using
our contribution from Chapter 6. The bands’ statistics are first fed to a prediction stage
to detect periodic behaviours. Likewise, statistics of the average bandwidth necessary
are collected. Models are fed with the bands’ usage statistics along with the average
bandwidth and the maximum latency allowed to guarantee a good end-to-end QoS. The
band model will then check if the band it is associated to can support both the wanted
bandwidth and latency. The scoring system will compute each band’s score based on
their width in MHz, expected average bandwidth and latency, and the variance of those
three parameters. The decision stage is responsible for deciding whether changing the
current band would make sense or not.

A node can not decide to change band unilaterally, this decision should be made by
all the relay nodes. When a node decides a change of band should be made, it should
send an alert containing the expected performance/usage ratio for both the bandwidth
and the latency metrics for both the current band and the list of candidate bands. This
alert should be received by the surrounding nodes that should try to find an alternative
route if they often use this node for communicating with other nodes.

The alert should also be received by a network-wide correlation node that will decide to
change bands when a criticality level gets higher than a given threshold. This threshold is
calculated based on the wanted end-to-end QoS. The contribution of a node to the current
criticality level should depend on how many routes are affected by this poor performance
and how many routes can not reach the expected QoS. When the criticality level is
reached, the correlation node uses the information found in the alerts that contributed
to reaching the threshold and try to find the most appropriate band for all the nodes
that emitted an alert. The correlation node should then propose this new band to every
relay node in the network. The solution we proposed to detect the need for a different
frequency band for the relay is very similar to the contribution found in Chapter 3.

Upon receiving such a message, relay nodes will need to update their beacon to reserve
some time for sensing the proposed band and collecting statistics. This allows the network
to stay available during the transition. After a timeout specified by the correlation node
that depends on the urgency of the switch, relay nodes should send their statistics to the
correlation node that will take its decision to either use this band or try the next best
one.

When the correlation node decides which band should be used by the relay nodes, it
should send a message to all the relay nodes telling them they should switch their band
in a certain amount of time. This delay should be high-enough to make all the nodes

148

7.4 Hardware requirements : Performance and availability

receive the message before it expires. Nodes should follow the procedure proposed in
Chapter 4 to announce a band switch by changing its beacon.

If a node did not receive the message in time and did not receive a beacon announcing
the change, it will still be able to find the other node in the band that was last proposed
by the correlation node. If it still can not find the other nodes, it should spend its time
on sensing to find them again. Based on our simulations in Chapter 4, it should be able
to find them in a matter of seconds in the worst case scenario.

In the event a single band can not be used across the network, the network should be
split in two or more sub-networks. Each sub-network should use a single band and have
the equivalent of edge routers that can spend half their time on a band and half the time
on the other in order to keep the network connected. The performance impact of such a
split will depend on the number the volume of data that needs to be exchanged between
the two sub-networks and the latency needed. The minimum performance impact can
however be computed by the correlation before the split happens when the correlation
node computes the beacon of the edge routers.

Finally, the node which is in average the closest to every other node of the sub-network
should be elected as the correlation node.

7.4 Hardware requirements : Performance and availability

Rescuers should focus on saving lives, not on making sure their tools have enough
power left to complete their tasks. They should be able to know that no matter what
they do with their tablet, they will still be able to go through the day with it. It is thus
necessary to modulate performance and power consumption to allow rescuers to trust
their device will be available for the rated time of 12 hours.

A battery capable of supplying the tablet for 12 hours when it is using all of its
peripherals, CPU, and network resources constantly is not realistic because it would
require it to be much heavier than what would be needed in most situations. A suitable
battery large-enough to accommodate most of the rescuers’ needs while being light-
enough should thus be selected. The average power consumption (Pavg) should then be
made lower than the capacity (in Joules) of the chosen battery (Cbat) divided by the
wanted battery life (Tbat life, in seconds), as can be seen in Equ. 7.1.

Pavg ≤
Cbat

Tbat life

(7.1)

Likewise, a relay should guarantee a certain availability and predictability in its failure
time to allow rescuers to change its batteries or fly a drone to its location before it
becomes unavailable.

149

7. PROPOSING A GREEN NETWORK FOR DISASTER RELIEF

Other reasons for which we need to be able to cap the power consumption of the tablet
is to make sure the tablet stays in its Thermal Design Power (TDP) and that it does not
consume more power than the battery is rated to be able to output safely. The TDP of
the table may actually be quite low due to its rugged nature that adds layers of elastic
materials that do not conduct heat as well as traditional solid casings.

A Graphical User Interface (GUI) could be provided with the tablet to let rescuers or
technicians diagnose poor-performance issues involving applications draining the power,
although no rescuer should ever be forced to know about it in order to use his device.
This GUI would display the power/energy usage of the different services along with the
repartition of its energy consumption on the CPU, GPU, modem, screen display and
sound card. A simpler version of this GUI has been developed by Intel under the name
powertop [171].

In this section, we evaluate how the network interface and the processors can react to
a power draw too high and vary their performance to cap it.

7.4.1 Network

Not every node type requires network performance management in order to meet their
availability goal. For instance, the power cost of keeping the drone in the air being far
greater than the power consumption of the wireless radio. We can thus consider leaving
the radio always on for a maximum availability and to lower the forwarding delay while
not impacting considerably the flight time of the drone.

Likewise, terrestrial human transport vehicles, used for relaying, should not worry
about their network power consumption as their batteries are usually very large and can
be recharged on demand by starting the combustion engine of the vehicle.

This is however not the case for terrestrial relays since all their energy consumption
comes from transmitting and receiving data. These relays need to be deployed on the
highest ground possible to extend their coverage. To ease their transport and their
deployment, they must be relatively small and light which limits the size of the battery
they can have. To lower the needed battery capacity, these relays could be fitted with
solar panels to recharge the battery during the day.

When a relay consumes power at a rate that will not allow it to fulfil its availability
contract, it should take measures to lower its power consumption. It can start by asking
surrounding nodes to find alternative routes. If the power consumption is still too high,
the relay should alert the command and control that it will start throttling transmissions
passing through it by delaying or dropping non-critical packets at first and then powering
down the radio periodically if it was still not enough. Finally, the relay should advertise
its end of life 2 hours before it happens to let the opportunity to rescuers to flight a relay
drone to its location until a rescuer changes the relay’s battery or the sun recharges the
battery the next morning.

150

7.4 Hardware requirements : Performance and availability

This graceful degradation of performance brings predictability to network transmis-
sions which is more important than immediate throughput and latency as it brings reli-
ability. This mechanism could also be used by tablets serving as relays at the difference
that the tablet’s operator should be prompted if the tablet should keep on relaying data
or not when relaying packets exceeds the allowed relay power budget.

Such a network architecture could thus accommodate the rescuers’ need for constant
connectivity, text/voice/video communication and live update of the maps and annota-
tions on it while guaranteeing some degree of availability for the entire time the relays
are supposed to be active.

7.4.2 Processors and accelerators

A big contributor to power consumption in the tablet is computational power needed
to performs calculations and display content on the screen. This computational power
is provided by both the CPU and the GPU which can both be limited in their power
consumption at a high rate, as shown in Chapter 5.

Low-power wireless sensor nodes can mostly predict exactly when and what they will
need to do at any time due to a single program running with almost no user inputs. They
can thus limit their power consumption in the code of the application by coalescing data
transmissions or by enabling peripherals such as the radio right before they are needed.
This enables the node to be programmed to get the lowest power consumption possible
while having a predictable performance cost. This allows the application programmer to
statically make sure the node’s availability will be met because he/she controls most of
the variables.

Unlike low-power wireless sensor nodes, a rescuer’s activity on his/her tablet is not
predictable in advance. Indeed, it has multiple applications which have different power
and performance needs that could be used concurrently or not. It is thus not possible
to statically guarantee the availability of the device using the techniques talked about
for the lower-power wireless sensor nodes which required a single application with full
control on the node and very few user inputs.

One solution for the tablet could simply be to limit the power consumption of the tablet
so it never exceeds Pavg by allocating power budgets for the CPU, GPU and the radio
and letting them make sure they stay in budget, as proposed in Chapter 5. However,
some applications may never be able to run if they consume more power than that.
Instead, it makes more sense to make sure that the average power consumption since we
started the tablet is lower than Pavg. Upon reaching 90% of Pavg, the tablet should start
throttling applications and services based on their priority so as the instantaneous power
consumption would tend towards Pavg. A power budget should thus be allocated to both
services and sub-devices instead of sub-devices only. A service is potentially composed
of multiple processes. We propose using a system such as Linux’s Cgroups [172] to group
processes into one service. Cgroups are a form of very lightweight virtual machine.

151

7. PROPOSING A GREEN NETWORK FOR DISASTER RELIEF

Because of the high dynamicity of the workload, an accurate estimation of the energy
consumption of each service is required. This means processors and accelerators should
have a fast and accurate hardware model of their power consumption that takes into
account the context switching and wake-up costs to provide this accurate reading.

Once a service exceeds its power budget, the frequency of the processors and acceler-
ators running it should be lowered until reaching the most efficient frequency. If this is
still not enough to limit the energy usage of the service to its budget, the service should
be throttled by forcing the CPU and/or GPU to do something else (or go to sleep if no
other service requires to be run) for some time.

Sharing resources such as network throughput or computational time fairly or according
to a policy between multiple services can be achieved by respectively using QoS algorithm
such as DiffServ [173] or a fair scheduler such as Linux’s Completely Fair Scheduler [174].
Per-service network bandwidth and CPU usage caps are already possible in Linux thanks
to the Cgroups. We have however been unable to find similar algorithms for limiting the
power consumption of services through a scheduling decision.

The processors and accelerators found in the tablet should self-optimise to lower the
power consumption at all time, as proposed in Chapter 5. It is also the operating sys-
tem’s job to make sure applications run on the most appropriate processor/accelerator
based on the application’s performance need and the incurred power consumption by the
application on the system. For instance, the OS is responsible for moving tasks on the
right core type in a big.LITTLE processor scenario, as proposed in Chapter 6, which can
yield up to 75% power saving for the CPU.

7.4.3 Other peripherals

Other peripherals such as the display’s backlight can be responsible for a large part of
the power consumption of the a rescuer’s tablet. To save some power, multiple techniques
are already exist in current smartphones and tablets. For instance, the backlight power
is controlled by the ambient brightness to make sure it stays visible. Also, a proximity
sensor disables the screen when the screen is not visible, either because it is up-side down
on a table or it is held up to one ear.

Likewise, sound’s volume could be adjusting by the ambient sound volume. When
there is little sound around, the volume could be kept low. On the contrary, if the
ambient sound is loud, the volume should be increased to make sure the rescuer can hear
it. The advantages of doing so are two-fold. Power can be saved by outputting just
the right amount of power to be heard. The second advantage being that an automatic
volume management will make sure the no rescuer will accidentally leave the volume on
low which could result in him/her not being reachable because he/she would not hear
the alert.

152

7.5 Conclusion

7.5 Conclusion

In this chapter, we created a scenario that showcase our contributions and how they
interact with each others. In this disaster-relief scenario, rescuers require constant com-
munication among each others and need tools to better locate and help victims. In
such a scenario, the rescuers’ time is a scarce resource and moving from one part of the
disaster area to another can take a lot of time due to a damaged road infrastructure.
We proposed a network architecture composed of multiple wireless radio nodes ranging
from low-power wireless sensor nodes to flying drones. These wireless nodes mostly self-
manage and have a predicable availability thanks to our contributions. This local power
management produces a global improvement on the entire network’s availability.

Our propositions can seem a little futuristic but, as we found out, all the hardware to
make it a reality has been available for several years already. Our PHY/MAC signalling
protocol allows nodes to find each others and react to changes in the RF spectrum usage
to keep being available. Our in-network data processing scheme enables substantial power
savings, increasing the battery life of intrusion detection systems meant to protect both
rescuers and civilians. Our autonomic hardware-level power management contribution
as well as the OS-level decision engine enable significant savings for the rescuers’ tablet
while also guaranteeing a level of availability for a pre-defined time-frame which translates
a global improvement in the entire network’s available. The decision engine has also
been used to create statistics of usage of the RF spectrum by both our network and
external users which are then used to identify which bands are best-suited for the current
usage of the RF spectrum. More research is however needed at every layer to enhance
the autonomic behaviour for power management and increase the nodes’ availability
guarantee.

Prototypes of the proposed autonomic tablets could soon be possible using a Tegra
K1-based tablet and a lot of reverse engineering to be able to access the software radio
modem [116].

153

7. PROPOSING A GREEN NETWORK FOR DISASTER RELIEF

154

Chapter 8

Conclusion

Contents

8.1 General conclusion . 155

8.2 Future work . 158

8.2.1 Decentralised data processing in Wireless Networks 159

8.2.2 Cognitive Radios Network . 159

8.2.3 Hardware . 160

8.2.4 Green networking with Energy-harvesting nodes 160

8.1 General conclusion

The environmental impact of Information and Communications Technology (ICT) has
been raising exponentially to equate the impact of the airline industry. The green com-
puting initiative has been created in response to this observation in order to meet the
15%-30% reduction in green-house gases by 2020 compared to estimations made in 2002.

In this thesis, we studied power-saving techniques in wireless networks and how they
interact with each others to provide a holistic view of green networking. The thesis goes
down the network stacks before going up the hardware and software stack.

Contributions have been made at most layers in order to propose an autonomic wireless
network where nodes can work collaboratively to improve the network’s performance,
globally reduce the RF spectrum usage while also increasing their battery life.

We now summarise the contributions found in each chapter of this thesis:

Application & Network: decentralising data processing

In Chapter 3, we discussed the power cost of sending and receiving messages. To
lower this cost, fewer and smaller messages should be sent. An effective way to do so is
to localise communications to reduce the number of hops a message has to go through
before reaching its destination. Localising communications means decentralising them as
much as possible.

155

8. CONCLUSION

Thanks to our in-network correlation scheme of heterogeneous and redunded sen-
sors, we managed to drastically localise transmissions for applications monitoring spatio-
temporally-correlated events. This drastically reduces the number of messages sent which
increases the battery-life of the network. An interesting side effect of this approach is
that it made automatic response to an event by the network trivial to implement in an
efficient way thanks to the data-centric routing mechanism we used and the in-network
reasoning capabilities of our system.

Such a drastic reduction in the number of exchanged messages and the decentralisation
of the data processing however makes it nearly impossible for the network operator to
verify that the network is working properly. We proposed a mechanism to make it
possible for the network operator to fetch an history of all the meaningful events that
happened in a recent past. This mechanism is also used in the network to allow detecting
malfunctioning sensors at a relatively low ROM (code) and RAM (data) cost by also
introducing a proposed reputation mechanism.

The complete proposition exhibits multiple autonomic traits such as:

• Self-configuration: Ad hoc network routing and discovery of the sensors in an area
allow the reasoning functions to compute criticality thresholds on the fly;

• Self-optimising: Learn about the false positives and false negatives rates of sensors
and adjust thresholds based on them to limit emissions;

• Self-healing: Find another route and reconfigure the thresholds when a node be-
comes unavailable. Automatically evict faulty sensors.

PHY/MAC: Efficient spectrum sharing

In Chapter 4, we introduced the concept of cognitive radio networks that aims at
allowing nodes to understand their RF environment and select the best frequency band
and modulation to communicate with any other surrounding node, cognitive or not.

Creating a truly-cognitive radio requires a direct access to the spectrum which is pos-
sible using a software-defined radio (SW radio). Such a radio can listen to a wide fre-
quency band and modulate/demodulate one or multiple transmissions happening inside
this band, thus allowing for an efficient sharing of the spectrum while also allowing radios
to find each others quickly. It thus also allows tuning the PHY parameters and the MAC
protocol depending on the current QoS needs.

Since cognitive radios (CRs) are very agile and may need to communicate with multiple
radios on different frequency bands, we proposed a mean of synchronisation between CRs.
This proposition allows CRs to know where and when in the RF spectrum surrounding
nodes will be available. This allows CRs to discover surrounding CRs and makes it
possible for them to synchronise their hopping pattern to guarantee a maximum delay
and a probable minimum throughput. The discovery of a new node can happen in less
than a second in realistic scenarios using $400 SW radios.

156

8.1 General conclusion

Our second proposition allows CRs to negotiate the allocation of spectrum and select
the best modulation for a transmission. This proposition is an improvement over IEEE
802.11’s CSMA/CA by providing advanced cognitive and autonomic abilities to spectrum
management

Both propositions increase the autonomic abilities of wireless nodes:

• Self-configuration: Allow CR discovery at any time, update the hopping-pattern at
run time to become reachable by other CRs;

• Self-optimising: Optimise the hopping sequence to improve performance with the
CRs the CR is primarily communicating with, then keep their hopping patterns in
sync even in the presence of clock drifting;

• Self-healing: React to (un-)intentional jamming by leaving the selected frequency
band and selecting a less-crowded one without shutting down communications and
without prior agreement among the CRs.

Hardware: Autonomic power management

In Chapter 5, we introduced the power management features found in modern hardware
which are sufficient to implement a fully-autonomic power management running on the
processor itself.

Indeed, hardware is increasingly complex and becomes harder and harder to configure
and optimise for every situation. Furthermore, some optimising decision such as clock
gating are so short-lived that they cannot possibly be taken by the main CPU at a fast-
enough speed without increasing the overall power consumption or without impacting
the performance of applications running on the CPU.

To optimise both the power consumption and performance, modern hardware has intro-
spection capabilities such as performance counters which can provide information about
how much each part of the processor has been used during the last few hundred mil-
liseconds. Using this information, it is possible to tune the performance of the processor
to improve performance of the parts of the processors that are currently the bottleneck
while slowing down the parts that are less used. This operation can be done using the
Real-Time Operating System running inside modern CPUs and GPUs which has all the
capabilities to perform those operations.

Based on our reverse engineering, the following autonomic traits can be implemented:

• Self-configuration: Processors can read a microcode from an embedded ROM when
powered-up and execute it to perform the required initialisation of the processor
before it is able to execute any code;

• Self-optimising: Performance counters can be used to optimise the performance
and lower the power consumption of the processor;

157

8. CONCLUSION

• Self-protection: Hardware contexts can isolate users in their own virtual memory
address space. Processors’ cryptographic abilities can be used to decode encrypted
information and keep it secret from any user.

• Self-healing: Processors can react to over-current and over-temperature by auto-
matically lowering their operating clock frequency to lower their power usage.

OS: Real-time power management decisions

In Chapter 6, we demonstrated the need for a run-time decision engine for power
management. Indeed, in modern computers such as smartphones, there are multiple
ways of carrying out the same task. Each way can be the most efficient one in some
conditions and the worst one in other conditions. It is thus very important to be able
to react quickly to changes in the usage pattern in order to constantly select the most
efficient way. The decision engine should also be able to learn from the usage pattern and
avoid the so-called ping-pong effect that can actually be damaging to both performance
and power consumption.

Our proposition thus enables the following autonomic traits:

• Self-optimising: Select the most efficient way of carrying the current task based on
the prediction of what is thought to be going to happen in the near future;

• Self-healing: Learn from previous transitions by gathering statistics and building
up knowledge to avoid making the same mistakes over and over again.

Proposing a green network for disaster relief

In Chapter 7, we showcased all our contributions together in a disaster relief scenario
where all the communication infrastructures have been destroyed. Together, our propo-
sitions allow the network to guarantee its availability while nodes work collaboratively
to provide the best network performance possible. Locally, nodes follow the autonomic
computing vision by automatically managing both the RF spectrum and the power usage.

This chapter also demonstrates the modularity of the different autonomic behaviours.
Indeed, we introduced three types of wireless nodes (sensors, relays and tablets) and have
shown that they all use the same autonomic features, but not always in the same way.
Some features may also not be needed at all depending on the node type. An example
would be the sensor node not requiring any autonomic behaviour in the hardware be-
cause one application controls the whole node. We have also shown that our software
architectures are generic-enough to be applicable for many types of decision making. For
instance, the run-time decision engine can be used without modifications to locally mon-
itor the spectrum and check that the select frequency band is still sufficient to guarantee
the needed QoS. The contributions of Chapter 3 can then find a global consensus to select
the most-suitable frequency band(s) across the network.

8.2 Future work

Due to time constraints, we have not yet addressed the following challenges:

158

8.2 Future work

8.2.1 Decentralised data processing in Wireless Networks

In our contribution to decentralise data processing in a Wireless Sensor Network, we
did not study the impact of adding redundancy in the area-level centralisation to increase
the reliability of the solution. The impact could be kept low as all the nodes in an area are
supposed to be able to communicate with each others. It however requires modifications
to both the routing algorithm and the MAC protocol.

In our experimentation, we used a centralised version of a Publish/Subscribe routing
algorithm to demonstrate our solution. It is however widely inefficient in a large area
network as even messages that could stay local have to be routed to the Pub/Sub broker
and then routed back to the neighbouring node interested in it. To improve the power
savings of our data-processing decentralisation proposition, we would like to develop
a fully decentralised Publish/Subscribe routing algorithm that would make sure that
messages never get forwarded unless they have to.

With this decentralised version of Pub/Sub routing, the node emitting an alert could
directly send the alert to all the nodes which are interested in it. Even if all the nodes
of an area are able to communicate with each others, the alert has to be duplicated to
every node interested in it because of limitations in our MAC protocol. To reduce the
number of emissions, it should be possible for all the correlation nodes of an area to
receive the same alert message. We thus want to study the feasibility of a local multicast
support at the MAC-layer which would support acknowledgements to make sure that
every receiver actually got the message. The list of all the receivers that need to receive
the message is available at the network level, in the Pub/Sub’s subscriber list. The
alert should thus be emitted as long as not all the receivers have acknowledged it. This
solution will possibly require to add a unique ID to the message so as a node that already
acknowledged reception of the message would not be forced to re-emit one when the alert
is re-sent because of another node. Another possibility would be to drop any receiver
that already acknowledged the message from the re-emission list. The main challenge of
implementing such a proposition lies in the very limited amount of RAM found on sensor
nodes.

8.2.2 Cognitive Radios Network

Still at the MAC-layer but on cognitive radio networks, we would like to propose
better cognitive abilities to better adapt to the RF environment and to the QoS of the
applications running on the network.

For example, nodes requiring an extremely-short latency and predicable transmission
times but requiring a limited bandwidth may permanently allocate a narrow frequency
band. This would satisfy the application’s QoS while not really impacting the ability for
other nodes to communicate. Such narrow bands should however be allocated close to
each others and close to primary users if applicable in order to avoid fragmenting the
spectrum which would hinder opportunistic CR communications using a higher band-
width.

159

8. CONCLUSION

As cognitive radio nodes are not very limited in memory usage, it is possible for them
to use any cross-layer information to improve the quality of their routing decision in
low-traffic wireless networks. Example of cross-layer information that can be leveraged is
the GPS coordinates of nodes sent to centralisation point by mobile nodes like explained
in Chapter 7.

8.2.3 Hardware

After working on the network and applications, we would also like to improve on the
hardware side.

We would first like to study the impact of encryption on wireless nodes when using
the hardware-encryption capabilities of TI’s CC430 [175]. The hardware capabilities are
limited to a single symmetric algorithm (AES-128) but they should provide a substan-
tial reduction in code size, performance and power consumption that we would like to
quantify.

We then would like to propose a generic DVFS policy that detects the bottlenecks
inside the GPU/CPU and increase the clock of the associated clock domain while also
diminishing the clock of the domains which are not as needed. Such fine-grained in-
formation about block usage can be retrieved very rapidly using performance counters.
The policy would also take into account the temperature to keep it as low as possible to
keep the power consumption down. Finally, the policy would make sure the processors
do not consume more than their assigned power cap in order to guarantee a minimum
battery-life and/or the safety of the hardware.

Finally, we would like to improve our run-time decision engine to dynamically rate
the effectiveness of our prediction mechanism. This scoring can be done by comparing
the result of previous predictions and check with what actually happened. With such
a system, it becomes possible to detect the most appropriate prediction system at run-
time. This would allow to improve the accuracy of our predictions which would lead to
a better decision which, in turn, would result in a better QoS enforcement and a lower
power consumption.

8.2.4 Green networking with Energy-harvesting nodes

In this thesis, we considered that our wireless nodes were powered with a battery
which may have been continuously recharged using energy harvesting. We however did
not consider the case where a wireless node would be powered only by a small capacitor
recharged using energy harvesting. Such nodes may need to perform work in bursts when
their power input is low and may perform heavier computations when their power input
is higher or when the capacitor is full. This further increases the complexity of operating
the network which increases the need for an autonomic behaviour at every layer.

Future work will evaluate the suitability of our propositions for such type of nodes and
propose new ways of collaborating in an autonomic fashion to keep the administration
of the network as simple as possible.

160

Appendix A

List of publications

Contents

A.1 Book chapters . 161

A.1.1 Green Networking . 161

A.2 International conferences . 162

A.2.1 On optimizing energy consumption: An adaptative authentica-
tion level in wireless sensor networks 162

A.2.2 Overcoming the Deficiencies of Collaborative Detection of Spa-
tially correlated Events in WSN 162

A.2.3 Power and Performance Characterization and Modeling of GPU-
accelerated Systems . 163

A.2.4 PHY/MAC Signalling Protocols for Resilient Cognitive Radio
Networks . 163

A.2.5 A run-time generic decision framework for power and perfor-
mance management on mobile devices 164

A.3 International Workshops . 164

A.3.1 Power and Performance Analysis of GPU-Accelerated Systems 164

A.3.2 Reverse engineering power management on NVIDIA GPUs -
Anatomy of an autonomic-ready system 165

In this appendix, we introduce the list of publications we made in international confer-
ences and workshops. The full list of poster presentations and talks is however available
online at http://phd.mupuf.org.

A.1 Book chapters

A.1.1 Green Networking

Editor Francine Krief

Publisher ISTE & Wiley

161

http://phd.mupuf.org

A. LIST OF PUBLICATIONS

Contribution I contributed about 14 pages to the chapter 6 called “Autonomic Green
Networks” where I talked about self-protection.

Description This book focuses on green networking, which is an important topic for
the scientific community composed of engineers, academics, researchers and industrialists
working in the networking field. Reducing the environmental impact of the communica-
tions infrastructure has become essential with the ever increasing cost of energy and the
need for reducing global CO2 emissions to protect our environment. Recent advances
and future directions in green networking are presented in this book, including energy ef-
ficient networks (wired networks, wireless networks, mobile networks), adaptive networks
(cognitive radio networks, green autonomic networking), green terminals, and industrial
research into green networking (smart city, etc.).

Note The book is also available in French under the title “Le green networking : Vers
des réseaux efficaces en consommation énergétique”, published by Lavoisier.

A.2 International conferences

A.2.1 On optimizing energy consumption: An adaptative authentica-
tion level in wireless sensor networks

Authors Martin Peres, Mohamed Aymen Chalouf, Francine Krief

Conference GIIS 2011: The 3rd IEEE International Global Information Infrastructure
Symposium 2011

Abstract Nowadays’s authentication methods are essentially based on cryptography
or any other kind of secret information. These methods are particularly efficient but they
are, in certain cases, very power-hungry. As energy is a scarce resource in wireless sensor
networks, we propose a new approach that consists in utilising the physical properties
of the transmission medium in order to calculate, when receiving a frame, a confidence
rating that we attribute to the source of the frame. This information is important in order
to decide if it is necessary to authenticate the source using asymmetric cryptography.
In the case where sensors are static and communications are slightly perturbed by the
environment, the proposed rating can add another layer of control which enables sensors
to check the origin of messages. This paper will also study how collaboration between
the network’s nodes further enhances detection of malicious or third-party nodes.

A.2.2 Overcoming the Deficiencies of Collaborative Detection of Spa-
tially correlated Events in WSN

Authors Martin Peres, Romain Perier, Francine Krief

Conference ICAIT 2012: The 5th IEEE International Conference on Advanced Info-
comm Technology

162

A.2 International conferences

Abstract Collaborative WSN are known to efficiently correlate sensors’ events to detect
spatially-correlated events with a low latency. However, because of the drastic reduction
of messages sent to the network administrator, it is difficult for him/her to understand
in what state the network is. In this paper, we propose a modality-agnostic collaborative
detection of spatio-temporally correlated events that drastically lowers power consump-
tion by both reducing and localising communication. This contribution can then be used
to expose better auditing capabilities that overcome the problems usually found in col-
laborative networks. These capabilities can in turn be used by both the administrator
and the network itself to, for instance, automatically react to faulty sensors. Experiments
validate the interest of our proposal in an intrusion detection scenario.

A.2.3 Power and Performance Characterization and Modeling of GPU-
accelerated Systems

Authors Yuki Abe, Hiroshi Sasaki, Shinpei Kato, Koji Inoue, Masato Edahiro, Martin
Peres

Conference IPDPS 2014: IEEE International Parallel & Distributed Processing Sym-
posium 2014

Abstract Graphics processing units (GPUs) provide an order-of-magnitude improve-
ment on peak performance and performance-per-watt as compared to traditional multi-
core CPUs. However, GPU-accelerated systems currently lack a generalized method of
power and performance prediction, which prevents system designers from an ultimate
goal of dynamic power and performance optimization. This is due to the fact that their
power and performance characteristics are not well captured across architectures, and
as a result, existing power and performance modeling approaches are only available for
a limited range of particular GPUs. In this paper, we present power and performance
characterization and modeling of GPU-accelerated systems across multiple generations
of architectures. Characterization and modeling must be tightly coupled to conclude
what GPUs can optimize power and performance, and how they are predictable. We
quantify impact of voltage and frequency scaling on each architecture with a particularly
intriguing result that a cutting-edge Kepler-based GPU achieves energy saving of 75% by
lowering GPU clocks in the best scenario, while Fermi- and Tesla-based GPUs achieve
no greater than 40% and 13%, respectively. Considering these characteristics, we pro-
vide statistical power and performance modeling of GPU-accelerated systems simplified
enough to be applicable for multiple generations of architectures. Our finding is that even
simplified statistical models are able to predict power and performance of cutting-edge
GPUs within errors of 20% to 30% for any set of voltage and frequency.

A.2.4 PHY/MAC Signalling Protocols for Resilient Cognitive Radio
Networks

Authors Martin Peres, Mohamed Aymen Chalouf, Francine Krief

Conference SoftCOM 2014: The 22nd IEEE International Conference on Software,
Telecomunications and Computer Networks

163

A. LIST OF PUBLICATIONS

Abstract Our society relies more and more on wireless communication technologies
while most of the RF spectrum has already been allocated by the states. As a result, un-
licensed bands are becoming crowded which makes it difficult to create a reliable network
without using more spectrum than really necessary. Allowing radio nodes to seamlessly
switch between different frequency bands without prior synchronisation would allow the
creation of a truly resilient radio network capable of avoiding the frequency bands used by
nodes that are not part of the network. In this paper, we propose using software-defined
radios in order to sense the surrounding RF environment to find the most suitable bands
for communication. We also propose a PHY-layer and a MAC-layer signalling protocols
to provide a seamless way of discovering other nodes and selecting the parameters that
will be used for communicating with them. Our first experimentation results are very
promising towards defining a resilient cognitive radio network.

A.2.5 A run-time generic decision framework for power and perfor-
mance management on mobile devices

Authors Martin Peres, Mohamed Aymen Chalouf, Francine Krief

Conference UIC 2014: The 11th IEEE International Conference on Ubiquitous Intel-
ligence and Computing

Abstract Nowadays, mobile user terminals are usually composed of multiple network
interfaces and multiple processors. This means there are usually several independent
ways of satisfying the immediate Quality of Service (QoS) expected by the user. Dynamic
decision engines are used for selecting the most power-efficient interface and performance
states in order to satisfy the QoS while increasing the battery life. Current decision-
engines are not generic and need to be mostly re-written when a new processor or radio
comes out. This is because there are no generic decision-making framework for real-time
power and performance management that would allow creating re-usable bricks that could
be shared by multiple decision engines. In this paper, we propose such a framework to
ease the implementation of a run-time decision making with real-time requirements and
a low memory/CPU footprint to increase the reliability of mobile devices.

A.3 International Workshops

A.3.1 Power and Performance Analysis of GPU-Accelerated Systems

Authors Yuki Abe, Hiroshi Sasaki, Martin Peres, Koji Inoue, Kazuaki Murakami,
Shinpei Kato

Conference HotPower’12: 2012 Workshop on Power-Aware Computing and Systems,
co-located with the 10th USENIX Symposium on Operating Systems Design and Imple-
mentation.

Abstract Graphics processing units (GPUs) provide significant improvements in per-
formance and performance-per-watt as compared to traditional multicore CPUs. This

164

A.3 International Workshops

energy- efficiency of GPUs has facilitated use of GPU in many application domains. Al-
beit energy efficient, GPUs still consume non-trivial power independently of CPUs. It
is desired to analyze the power and performance charateristic of GPUs and their causal
relation with CPUs. In this paper, we provide a power and performance analysis of
GPU-accelerated systems for better understandings of these implications. Our analy-
sis discloses that system energy could be reduced by about 28% retaining a decrease in
performance within 1%. Specifically, we identify that energy saving is particularly sig-
nificant when (i) reducing the GPU memory clock for compute- intensive workload and
(ii) reducing the GPU core clock for memory-intensive workload. We also demonstrate
that voltage and frequency scaling of CPUs is trivial and even should not be applied in
GPU-accelerated systems. We believe that these findings are useful to develop dynamic
voltage and frequency scaling (DVFS) algorithms for GPU-accelerated systems.

A.3.2 Reverse engineering power management on NVIDIA GPUs -
Anatomy of an autonomic-ready system

Authors Martin Peres

Conference OSPERT 2013: 9th annual workshop on Operating Systems Platforms for
Embedded Real-Time applications held in conjunction with the 25th Euromicro Confer-
ence on Real-Time Systems (ECRTS13)

Abstract Research in power management is currently limited by the fact that com-
panies do not release enough documentation or interfaces to fully exploit the potential
found in modern processors. This problem is even more present in GPUs despite having
the highest performance-per-Watt ratio found in today’s processors. This paper presents
an overview of the power management features of modern NVIDIA GPUs that have been
found through reverse engineering. The paper finally discusses about the possibility of
achieving self-management on NVIDIA GPUs and also discusses the future challenges
that will be faced by researchers to study and improve on autonomic systems.

165

A. LIST OF PUBLICATIONS

166

Appendix B

List of Software Projects

Contents

B.1 Decentralising data processing in surveillance networks . . . 167

B.1.1 Reasoning services . 168

B.1.2 Build network . 168

B.1.3 Diase . 168

B.2 Efficient spectrum sharing . 168

B.2.1 GR-GTSRC & Spectrum-viz 168

B.2.2 Hachoir UHD . 169

B.2.3 Non-real-time PHY simulator 169

B.3 Defining an autonomic low-power node 169

B.3.1 Nouveau . 169

B.3.2 Envytools . 169

B.3.3 PDAEMON tracing . 170

B.4 Making real-time power management decisions 170

B.4.1 RTGDE . 170

During the course of this thesis, we developed multiple software projects or contributed
to already-existing ones. They are listed here and categorised by the chapter of the thesis
they are related to:

B.1 Decentralising data processing in surveillance networks

We developed 3 main projects when researching on data processing decentralisation in
surveillance networks, found in Chapter 3.

The source code of the following projects can be found publicly [176] under the GPLv2
license.

167

B. LIST OF SOFTWARE PROJECTS

B.1.1 Reasoning services

The main contribution of this chapter consists in the autonomic reasoning services
described in Chapter 3. It currently lacks the automatic eviction of faulty sensors but
has all the other features (correlation, history, sensor reputation, ...). The contribution
can be found in the folder diaforus/application/reasoning.

Note The released code does only include the work of LaBRI and is insufficient to run
on its own as it lacks the freeRTOS, UIP, Pub/Sub and CoAP implementations along
with the platform drivers. Lastly, the toolchain we used was buggy and did not allow us
to define default values for variables. We thus had to re-initialise them at boot time.

B.1.2 Build network

The role of the build network.py is to generate the firmware of every node in the
network. It takes an input file such as the one defined in Appendix C and parses it.
Next, it generates the firmware of each node by first generating the configuration of a
node in C header files (stored in the config/ directory) and then compiling the code using
the right toolchain (for real/simulated hybrid networks). This python script can also run
the network when nodes were compiled in the simulation mode (x86).

B.1.3 Diase

One of the biggest project of this chapter was definitely the DIAforus Simulation
Environment (DIASE). It allows deploying, validating and monitoring the DIAFORUS
network and is meant to be used on a tablet. Screenshots of the environment and how it
operates can be found in Appendix D.

B.2 Efficient spectrum sharing

We developed four projects when researching efficient spectrum sharing, found in Chap-
ter 4. They are currently in an experimental state but we are slowly improving on them as
time permits to make it possible for us to implement the proposed PHY/MAC protocols.

The source code of the following projects is available publicly [89] under the GPLv2
license.

B.2.1 GR-GTSRC & Spectrum-viz

This project started as a way to analyse the spectrum in real-time to fill the Radio
Event Table introduced in Chapter 4. The code is implemented as a GNU-Radio block
that would instantiate decoders and encoders on the flight to respectively demodulate
incoming signals and modulating outgoing messages.

It also contains a visualisation tool called Spectrum-viz which allows debugging and
demonstrating the abilities of GR-GTSRC. This project was used during our mid-term
demonstration for the ANR (the French research agency that funded the Licorne project).

168

B.3 Defining an autonomic low-power node

B.2.2 Hachoir UHD

Hachoir UHD is a simplified version of the GR-GTSRC GNU-radio block that allowed
us to experiment with PHY-parameters detection and real-time communications. The
latter has been done using two bladeRF, a PSK modulation and Linux’s network stack
to generate the messages. Frames were received and injected in the network stack by
using a TUN network interface.

It has also been used as a basis for a research project on creating a box capable of
centralising the data coming from unknown sensors in its surrounding. The identification
of the sensor is done using PHY-layer parameters along with link-layer frame decoding.

This project is the most usable one and can often be used successfully to analyse
low-speed communications such as the ones from car keys or smart meters.

B.2.3 Non-real-time PHY simulator

This simulator has been developed to evaluate our PHY-layer signalling protocol and
generate the figures found in Chapter 4. Its main interest is that it simulates the network
as fast as possible and not in real-time in order to make it possible to run the simulation
millions of time with random parameters to get meaningful results.

B.3 Defining an autonomic low-power node

In this section, we introduce the three main projects we have developed when working
on the hardware-side of power management. The source code for each project will be
given in the following subsections.

B.3.1 Nouveau

We participated to the Open Source driver for NVIDIA cards developed mostly without
the help from NVIDIA, written in C, licensed under the MIT/X11 Open Source license
and part of the Linux kernel.

We believe having a production-ready Open Source platform for NVIDIA GPUs is
important for research as it allows full access to the GPU and also enables performance
comparisons with the proprietary driver. Our participation mainly concerns thermal
management, fan management, vbios parsing, PDAEMON and clock tree reclocking.
Since 2010, this amounts to 90 patches in the kernel tree.

The source code is available in Linux [177] or in an out-of-the-tree version [178] that
can be run as a process instead of a kernel driver.

B.3.2 Envytools

The envytools project has been started by Nouveau developers to study the hardware
and analyse traces of the proprietary driver. It allows documenting the hardware in both
machine-readable and human-readable form. The project is located on github [97] while
the human-readable documentation can be found on readthedocs [179].

169

B. LIST OF SOFTWARE PROJECTS

Our contribution to this project are mostly focused in vbios management tools (nvaget-
bios, nvafakebios and nvbios), performance counters documentation and automated re-
verse engineering tools (nvacounter), clocks and memory timings (nvatimings and nvamem-
timings) and i2c transaction spy (nvaspyi2c). We also documented PTHERM in great
length on the Tesla generation along with writing hardware tests to verify the result of
the reverse engineering more easily.

B.3.3 PDAEMON tracing

In Figures 5.24, 5.25, 5.26 and 5.27, we analysed the reclocking policy implemented by
NVIDIA. Creating these figures required to track multiple parameters at the same time
such as the temperature, the frequency of every clock, the FSRM state and the power
consumption. We also needed to generate fake loads to evaluate their impact on the
configuration of the GPU.

We developed such tools and released them under a GPLv2 license. The source code
can be found publicly [180] although it will likely require modifications to run on your
hardware.

B.4 Making real-time power management decisions

B.4.1 RTGDE

We implemented the decision engine proposed in Chapter 6 along with multiple unit
tests, gnuplot examples and test scenarios.

The project has been written in C and has been tested on modern Linux distributions.
It should also be portable to other Operating Systems without problems.

The source code is available publicly [165] under the MIT license.

170

Appendix C

Diaforus : An example
deployment file

The following code listing is an example of deployment XML file we talked about in
Chapter 3. This is an hybrid deployment containing both simulated and real wireless
nodes. The simulated node run the area-level reasoning code while the real nodes host
sensors.

Listing C.1: deployment.xml

1 <?xml ve r s i on=’ 1 .0 ’ encoding=’ utf−8 ’ ?>
2 < !DOCTYPE network SYSTEM ’ . . / network . dtd ’>
3 <network f a i l u r e h a nd l i n g=” f a l s e ” pub sub r e l i ab l e=” true ”>
4 <bu i ld>
5 < !−− path : f i l e p a t h to the make binary (op t i ona l)
6 a r g s : parameters you can s p e c i f y f o r make (op t i ona l)
7 r o o t : the d i r e c t o r y that conta in s the Make f i l e
8 output : the binary f i l e generated by the p r o j e c t
9 −−>
10 <make output=” d i a f o r u s f i n a l c o d e ” root=” bu i ld /” t a r g e t=”host ”

args=”−j 8 ”/>
11 <make output=” d i a f o r u s f i n a l c o d e . j t a g . s3 ” root=”Debug/”

ta r g e t=”aps3” args=”−j 1 ”/>
12 <debug pubsub=” true ” uip=” f a l s e ” s i c s l owpan=” f a l s e ” rp l=” f a l s e

” wavesim=” f a l s e ” coap=” f a l s e ” reason ing=” true ”/>
13 <app l i c a t i o n name=”REASONING”/>
14 </ bu i ld>
15
16 <coap groups>
17 <group name=” reason ing1 ”>
18 <r e s ou r c e name=” i n t r u s i o n du r a t i o n ”/>
19 <r e s ou r c e name=” latency mode ”/>
20 </group>
21 <group name=” reason ing2 ”>
22 <r e s ou r c e name=” h i s t a n a l y z e p e r ”/>
23 <r e s ou r c e name=” c r i t i c a l i t y l v l ”/>

171

C. DIAFORUS : AN EXAMPLE DEPLOYMENT FILE

24 <r e s ou r c e name=” h i s t o r y ”/>
25 <r e s ou r c e name=” a l e r t a l a rm r a t i o ”/>
26 </group>
27 <group name=” rp l ”>
28 <r e s ou r c e name=” rp l n e i ghbo r s ”/>
29 <r e s ou r c e name=” rp l r ank ”/>
30 <r e s ou r c e name=” rp l num routes ”/>
31 <r e s ou r c e name=” rpl num tra mess ”/>
32 <r e s ou r c e name=” rpl num rec mess ”/>
33 </group>
34 <group name=” a l l n od e s ”>
35 <r e s ou r c e name=”num tra packets ”/>
36 <r e s ou r c e name=”num rec packets ”/>
37 <r e s ou r c e name=”nodeid ”/>
38 </group>
39 </ coap groups>
40
41 < !−− Zone 1 −−>
42 <node t a r g e t=”host ” s imu la t i on=” true ” id=”20” area=”1” name=”node

root r eason ing 1”>
43 <f i rmware name=”node 20”/>
44 <phy x=”910” y=”865” range=”900”/>
45 <energy s ta r tup=”1600” alarm=”100”/>
46 <r p l>
47 <r e s t r i c t n e i g h b o r s>
48 <neighbor node id=”1”/>
49 <neighbor node id=”2”/>
50 <neighbor node id=”3”/>
51 <neighbor node id=”4”/>
52 </ r e s t r i c t n e i g h b o r s>
53 </ rp l>
54 <pubsub enable=” true ”/>
55 <coap enable=” true ”>
56 <group name=” reason ing2 ”/>
57 <group name=” rp l ”/>
58 <group name=” a l l n od e s ”/>
59 </coap>
60 < !−− The parameters to c on t r o l the reason ing (l e v e l 1 and

l e v e l 2) −−>
61 <r ea son ing latency mode=” green ” max in t rus i on durat i on=”10”

min in t ru s i on dura t i on=”5”>
62 < !−− This node i s the reason ing node −−>
63 <reason ing node l o g ana l y s e p e r i o d=”1440”/>
64 </ reason ing>
65 <s en s o r s />
66 </node>
67
68 <node t a r g e t=”aps3” s imu la t i on=” f a l s e ” id=”2” area=”1” name=”node

p i r 2−1”>
69 <f i rmware name=”node 2 . j t a g . s3 ”/>

172

70 <phy x=”836” y=”813” range=”900”/>
71 <energy s ta r tup=”1600” alarm=”100”/>
72 <r p l>
73 <r e s t r i c t n e i g h b o r s>
74 <neighbor node id=”1”/>
75 </ r e s t r i c t n e i g h b o r s>
76 </ rp l>
77 <pubsub enable=” true ”/>
78 <coap enable=” true ”>
79 <group name=” reason ing1 ”/>
80 <group name=” rp l ”/>
81 <group name=” a l l n od e s ”/>
82 </coap>
83 <r ea son ing latency mode=” green ” max in t rus i on durat i on=”10”

min in t ru s i on dura t i on=”5”/>
84 <parameter va lue=”NODEMOBOARD” name=”HWMODALITY”/>
85 <parameter va lue=”−120” name=”M FREQ OFFSET”/>
86 <s en s o r s>
87 <modal ity type=”PIR”>
88 <s enso r per iod=”200” r e em i s s i on de l ay=”3001” type=”

d i g i t a l ” id=”0” de lay=”0”>
89 <gpio pin=”2”/>
90 <value ab s th r e sho ld=”1” r e l t h r e s h o l d=”1” i nv e r t=

” f a l s e ”/>
91 <po s i t i o n x=”763” y=”785” z r o t a t i o n=”−110”/>
92 </ senso r>
93 </modal ity>
94 </ s en so r s>
95 </node>
96
97 <node t a r g e t=”aps3” s imu la t i on=” f a l s e ” id=”3” area=”1” name=”node

p i r 3−1”>
98 <f i rmware name=”node 3 . j t a g . s3 ”/>
99 <phy x=”956” y=”799” range=”900”/>

100 <energy s ta r tup=”1600” alarm=”100”/>
101 <r p l>
102 <r e s t r i c t n e i g h b o r s>
103 <neighbor node id=”1”/>
104 </ r e s t r i c t n e i g h b o r s>
105 </ rp l>
106 <pubsub enable=” true ”/>
107 <coap enable=” true ”>
108 <group name=” reason ing1 ”/>
109 <group name=” rp l ”/>
110 <group name=” a l l n od e s ”/>
111 </coap>
112 <r ea son ing latency mode=” green ” max in t rus i on durat i on=”10”

min in t ru s i on dura t i on=”5”/>
113 <s en s o r s>
114 <modal ity type=”PIR”>

173

C. DIAFORUS : AN EXAMPLE DEPLOYMENT FILE

115 <s enso r per iod=”200” r e em i s s i on de l ay=”3001” type=”
d i g i t a l ” id=”0” de lay=”0”>

116 <gpio pin=”2”/>
117 <value ab s th r e sho ld=”1” r e l t h r e s h o l d=”1” i nv e r t=

” f a l s e ”/>
118 <po s i t i o n x=”905” y=”738” z r o t a t i o n=”−110”/>
119 </ senso r>
120 </modal ity>
121 </ s en so r s>
122 </node>
123
124 < !−− Zone 2−−>
125 <node t a r g e t=”host ” s imu la t i on=” true ” id=”1” area=”2” name=”node

root r eason ing 2”>
126 <emblem source=”c2 . png”/>
127 <f i rmware name=”node 1”/>
128 <phy x=”1138” y=”863” range=”900”/>
129 <energy s ta r tup=”1600” alarm=”100”/>
130 <r p l p r e f i x=”1180 : 0000 : 0000 : 0000 ”>
131 <r e s t r i c t n e i g h b o r s>
132 <neighbor node id=”20”/>
133 <neighbor node id=”2”/>
134 <neighbor node id=”3”/>
135 <neighbor node id=”4”/>
136 <neighbor node id=”21”/>
137 <neighbor node id=”22”/>
138 </ r e s t r i c t n e i g h b o r s>
139 </ rp l>
140 <pubsub enable=” true ” broker=” true ”/>
141 <coap enable=” true ”>
142 <group name=” reason ing2 ”/>
143 <group name=” rp l ”/>
144 <group name=” a l l n od e s ”/>
145 </coap>
146 <gateway port=”1235”/>
147 < !−− The parameters to c on t r o l the reason ing (l e v e l 1 and

l e v e l 2) −−>
148 <r ea son ing latency mode=”white ” max in t rus i on durat i on=”10”

min in t ru s i on dura t i on=”5”>
149 < !−− This node i s the reason ing node −−>
150 <reason ing node l o g ana l y s e p e r i o d=”1440”/>
151 </ reason ing>
152 <s en s o r s />
153 </node>
154
155 <node t a r g e t=”aps3” s imu la t i on=” f a l s e ” id=”21” area=”2” name=”node

p i r 1−2”>
156 <f i rmware name=”node 21 . j t a g . s3 ”/>
157 <phy x=”1174” y=”632” range=”900”/>
158 <energy s ta r tup=”1600” alarm=”100”/>

174

159 <r p l>
160 <r e s t r i c t n e i g h b o r s>
161 <neighbor node id=”1”/>
162 </ r e s t r i c t n e i g h b o r s>
163 </ rp l>
164 <pubsub enable=” true ”/>
165 <coap enable=” true ”>
166 <group name=” reason ing1 ”/>
167 <group name=” rp l ”/>
168 <group name=” a l l n od e s ”/>
169 </coap>
170 <r ea son ing latency mode=”white ” max in t rus i on durat i on=”10”

min in t ru s i on dura t i on=”5”/>
171 <parameter va lue=”NODEMOBOARD” name=”HWMODALITY”/>
172 <parameter va lue=”−240” name=”M FREQ OFFSET”/>
173 <s en s o r s>
174 <modal ity type=”SEISMIC”>
175 <s enso r per iod=”200” r e em i s s i on de l ay=”5001” type=”

d i g i t a l ” id=”0” de lay=”0”>
176 <gpio pin=”3”/>
177 <value ab s th r e sho ld=”1” r e l t h r e s h o l d=”1” i nv e r t=

” f a l s e ”/>
178 <po s i t i o n x=”1121” y=”614” z r o t a t i o n=”80”/>
179 </ senso r>
180 </modal ity>
181 </ s en so r s>
182 </node>
183
184 <node t a r g e t=”aps3” s imu la t i on=” f a l s e ” id=”22” area=”2” name=”node

p i r 2−2”>
185 <f i rmware name=”node 22 . j t a g . s3 ”/>
186 <phy x=”1339” y=”568” range=”900”/>
187 <energy s ta r tup=”1600” alarm=”100”/>
188 <r p l>
189 <r e s t r i c t n e i g h b o r s>
190 <neighbor node id=”1”/>
191 </ r e s t r i c t n e i g h b o r s>
192 </ rp l>
193 <pubsub enable=” true ”/>
194 <coap enable=” true ”>
195 <group name=” reason ing1 ”/>
196 <group name=” rp l ”/>
197 <group name=” a l l n od e s ”/>
198 </coap>
199 <r ea son ing latency mode=”white ” max in t rus i on durat i on=”10”

min in t ru s i on dura t i on=”5”/>
200 <parameter va lue=”WITH SPIRIT” name=”HWMODALITY”/>
201 <parameter va lue=”−240” name=”M FREQ OFFSET”/>
202 <s en s o r s>
203 <modal ity type=”SPIRIT”>

175

C. DIAFORUS : AN EXAMPLE DEPLOYMENT FILE

204 <s enso r per iod=”500” r e em i s s i on de l ay=”3001” type=”
d i g i t a l ” id=”0” de lay=”0”>

205 <gpio pin=”0”/>
206 <value ab s th r e sho ld=”1” r e l t h r e s h o l d=”1” i nv e r t=

” f a l s e ”/>
207 <po s i t i o n x=”1273” y=”585” z r o t a t i o n=”0”/>
208 </ senso r>
209 </modal ity>
210 </ s en so r s>
211 </node>
212 </network>

176

Appendix D

DiaSE : DIAFORUS’ Simulation
Environment

Contents

D.1 Deployment . 177

D.2 Running the network . 178

D.3 Scenario . 179

D.4 C2 : Command & Control . 180

D.5 Monitoring . 182

In this appendix, we demonstrate the capabilities of DiaSE, the simulation environment
for the DIAFORUS network which has been presented in Chapter 3.

D.1 Deployment

The first view, shown in Figure D.1 allows deploying a network with the mouse. Nodes
should be added by selecting the antenna icon and clicking where it is wanted on the
map.

Likewise, adding sensors is done by selecting the wanted type, clicking on the map
where it should be deployed, orient the sensor by moving your mouse before clicking
again. Connecting sensors to their node is done by changing the nodeID parameter of
the sensor.

Emblems can be assigned to nodes to better-represent their function. For instance,
in this figure, the gateway and the alarm have emblems while the other nodes use the
default antenna icon.

It is possible to visualise the connectivity of a node by putting the mouse’s cursor on
top of the node. It is also possible to see the whole network connectivity by telling so in
the Display menu.

177

D. DIASE : DIAFORUS’ SIMULATION ENVIRONMENT

Figure D.1: Deploying a network using Diase

D.2 Running the network

The Network menu contains the different modes supported by Diase (fully-simulated,
hybrid or fully hardware). The menu can be seen in Figure D.2.

Figure D.2: Running options for the network (building, running the gateway, running a
simulation)

178

D.3 Scenario

Before running the network, it is necessary to build it. To do so, press the Build option
in the Network menu. The result is shown in Figure D.3.

Figure D.3: Building the network

We further demonstrated how to use Diase by running a fully-simulated network and
then opening the Nodes output console. In Figure D.4, we show the logs produced by
our physical-layer simulation.

We then show in Figure D.5 the debug output of a correlation node.

D.3 Scenario

Now that the network has been compiled and is running, we can simulate different
kind of intruders (cars and pedestrians).

The user has to create a path using his/her mouse by first clicking on the hand icon
then left-clicking to create the different segments of the intrusion path. We the path is
finished, the user should press the right button of the mouse.

Once a path has been created, the user can attach a pedestrian or a car to it by
selecting the corresponding icon and then clicking at the beginning of the path it should
be assigned onto.

The car simulates a fast intrusion and is shown in Figure D.6.

The pedestrian simulates a slow intrusion and is shown in Figure D.7.

179

D. DIASE : DIAFORUS’ SIMULATION ENVIRONMENT

Figure D.4: Simulating the communication medium with our dispatcher

Figure D.5: Simulating a correlation node

D.4 C2 : Command & Control

One of the most important panel of the Diase environment is the Command & Control
(C2) mode.

180

D.4 C2 : Command & Control

Figure D.6: Simulating the intrusion of a car in the DIAFORUS network

Figure D.7: Simulating the intrusion of a pedestrian in the DIAFORUS network

In this mode, the network operator can visualise the current state of alarm of all the
areas by checking if it is drawn in red or not. The sensors that contributed to the past
alarms are also drawn in red.

To acknowledge an intrusion, the operator needs to click in the area he/she wants to
acknowledge. This resets the state of the area.

181

D. DIASE : DIAFORUS’ SIMULATION ENVIRONMENT

Figure D.8: Command & Control mode : Visualisation of an alarm in an area along with
which sensors participated in it

The past intrusions can be found in the Alarms logs. They contain the time at which it
happened, the area concerned and the list of sensors involved. Finally, it also contains the
intrusion time which is computed as the difference between the first sensor that detected
the intrusion and the last one that did. This enables the operator to get a sense of the
speed of the intrusion and allow him/her to react appropriately.

The C2 mode can be seen in Figure D.8. In this figure, we can see that the area 2
is reporting an intrusion thanks to its red color. The sensors that contributed to the
intrusion are nodes 21 and 23. The alarms log shows that multiple alarms have been
received for the same intrusion because the pedestrian that is currently in the area walks
very slowly and because the sensors are not able to calculate the distance between the
sensor and the intruder(s).

D.5 Monitoring

Diase allows the network operator to inspect the state of every node in the network to
check what is going on. To do so, Diase uses the REST protocol CoAP to retrieve the
resources and display them.

In Figure D.9, we can see the left panel allows monitoring a new element. In this
figure, we can see how the operator can select which node he/she wants.

In Figure D.10, we can see how the operator can select the resource he/she is interested
in displaying before being asked whether to display it in a textual or graphical repre-
sentation (not shown in any screenshot). The list of resources is not directly exported

182

D.5 Monitoring

Figure D.9: Monitoring mode : Listing the nodes that export CoAP resources

by the node, instead, the node only reports which group of resources is available. The
content of this group can be found in the network xml file (Appendix C).

Figure D.10: Monitoring mode : Selecting which resource should be added to the current
monitoring view

183

D. DIASE : DIAFORUS’ SIMULATION ENVIRONMENT

The way the resource should be presented is defined in a local file called diase.ini which
allows the operator to specify the format of the CoAP resource, how to display it and
how often it should be polled. An example can be seen in the listing diase.ini.

Listing D.1: diase.ini

1 [i n t r u s i o n du r a t i o n]
2 name=”Avg . i n t r u s i o n durat ion ”
3 type=shor t
4 drawing=text
5 i n t e r v a l =10000
6
7 [h i s t o r y]
8 name=”Events h i s t o r y ”
9 type=mult ipar t
10 mult ipar t \1\ keys=mult ipar t [1] . type [0]
11 mult ipar t \1\ va lue s=mult ipar t [1] . type [1] , mul t ipar t [2] . type [0] , mul t ipar t

[2] . type [1]
12 mult ipar t \2\name=h i s t o ry pa r t 1 , h i s t o r y pa r t 2
13 mult ipar t \2\ type=int , byte
14 mult ipar t \3\name=h i s t o r y s en s o r pa r t 1 , h i s t o r y s en s o r pa r t 2 ,

h i s t o r y s e n s o r p a r t 3
15 mult ipar t \3\ type=short , byte
16 mult ipar t \ s i z e=3
17 drawing=plug in : : bargraph : : h i s t o r y
18 i n t e r v a l =5000
19
20 [rp l num routes]
21 name=”RPL number o f route s ”
22 type=byte
23 drawing=text
24 i n t e r v a l =10000
25
26 [rp l num tra mess]
27 name=”RPL transmit ted messages ”
28 type=shor ta r ray
29 shor ta r ray \1\name=”DIO”
30 shor ta r ray \2\name=”DAO”
31 shor ta r ray \3\name=”DIS”
32 shor ta r ray \4\name=”DAO/ACK”
33 shor ta r ray \ s i z e=4
34 drawing=text bargraph
35 i n t e r v a l =10000

In Figure D.11, we can see different resources shown in both a textual and graphical
representation. The graphical representation is interactive and can be zoomed in and out
while also allowing scrolling back and forth in time.

In Figure D.12, we can see two examples of graphical resources as displayed by Diase.

184

D.5 Monitoring

Figure D.11: Monitoring mode : Example of a monitoring view for a node with both
textual and graphical representations

(a) The number of type of packets received (b) Evolution of the criticality level of Node 2

Figure D.12: Two examples of the real-time graphical representation of the CoAP resources
in Diase

185

D. DIASE : DIAFORUS’ SIMULATION ENVIRONMENT

186

Appendix E

Real-life deployment of the
DIAFORUS Network

The results presented earlier in Chapter 3 have been obtained using a simulated net-
work. However, in the DIAFORUS ANR project, we ported this network on real nodes
and validated the simulation results. The algorithms used for the simulation are the ones
used on the real nodes. This means our proposal is feasible on standard sensor nodes.

E.1 Hardware used

Sensors and actuators used

We used two military sensors from Thales1 because they were one of our industrial
partners in this research project along with Coronis2 which provided the sensor nodes.

In our real-life testing, we used 4 types of sensors:

• an infrared unidirectional barrier from Thales (Figure E.1a);

• a 60° infrared barrier called SPIRIT from TechNext (Figure E.1c);

• a seismic sensor from Thales (Figure E.1b);

• a manual switch, for simulating a seismic sensor on tabletop demos.

The only actuator used during this demonstration was a buzzer to simulate an alarm
when the correlation node would detect an intrusion.

Sensor nodes

For our real-life test, we used the sensors nodes developed by Coronis. These nodes
contain an APS3 core from Cortus [181], a 32 bit micro-controler with an Harvard archi-
tecture oriented towards power efficiency and small code size. We had 4 kB of RAM and
48 kB left for the code which could also hold some data although with a performance
hit. The node is visible in Figure E.2.

1http://www.thalesgroup.com/en
2http://www.coronis.com

187

http://www.thalesgroup.com/en
http://www.coronis.com

E. REAL-LIFE DEPLOYMENT OF THE DIAFORUS NETWORK

(a) Deploying a Thales in-
frared barrier

(b) Deploying a Thales
seismic sensor

(c) Deploying a 16-beam
infrared sensor

Figure E.1: Deployment of some sensors for protecting a farm in a military field

(a) Four sensor nodes with an unidirec-
tional infrared barrier attached

(b) A close-up on the sensor node, when
attached to its demonstration board

Figure E.2: Deployment of some sensors for protecting a farm in a military field

The node’s transceiver implements the Wavenis/wave2m standard [37]. It can operate
on the 433, 868, 915 and 2400 MHz bands. Its bitrate ranges from 4.8 to 100 kbps. It’s
modulation is a GFSK and it also supports Frequency Hopping Spread Spectrum (FHSS)
to increase the link reliability.

E.2 Tested scenarios

We tested the versatility of our proposition using 6 operational scenarios proposed by
Thales Telecommunications. The videos of our deployment scenarios are available on
Youtube1.

E.2.1 A - Short-loop response

Operational need Detecting an intrusion and triggering an automatic response with-
out the intervention of the operator. The operator is however warned about the intrusion.

1https://www.youtube.com/user/ANRDIAFORUS/videos?sort=da&flow=grid&view=0

188

https://www.youtube.com/user/ANRDIAFORUS/videos?sort=da&flow=grid&view=0

E.2 Tested scenarios

Deployment Two unidirectional infrared barriers are deployed along a path leading
to a restricted area. Another node receives the information about the intrusion and
automatically sounds an alarm.

Result When a simulated pedestrian walks on the restricted path and crosses the
first infrared barrier, nothing happens. When he/she continues and crosses the second
barrier, an alarm sounds a few seconds later without the intervention of the operator. The
operator however received an alarm on Diase, in the Command & Control (C2) mode.
The result can be seen in Figure E.3 and on Youtube, at http://youtu.be/oVN-ncoBVNE.

Figure E.3: Testing the short-loop scenario on real sensor nodes

E.2.2 B - Inter-area communication

Operational need Some areas may not be of immediate interest to an operator be-
cause they are often used by civilians. The situation of these area is however useful to
increase the vigilance-level of an adjacent area that has a restricted access. The situa-
tion of adjacent zone thus allows an area to detect an intrusion faster by requiring less
intra-area correlation while still limiting false positives.

Deployment We deployed two areas, an area with a restricted access and an area of
interest with no access control. The restricted-access area has two sensors, a SPIRIT and
a simulated seismic sensors. The area of interest has two infrared barriers.

Result At first, a pedestrian needs to cross both sensors in the area of interest to
trigger an alarm. But if the pedestrian tripped both sensors of the area of interest, then
he/she will be detected after tripping only one sensor in the restricted-access area. The
result can be seen in Figure E.4 and on Youtube, at http://youtu.be/y8uvsAPZ3zw.

E.2.3 C - Per-area sensitivity settings

Operational need Areas further from the zone to protect are not as latency-sensitive
as areas closer to the zone to protect. The further an area is from the zone to protect,

189

http://youtu.be/oVN-ncoBVNE
http://youtu.be/y8uvsAPZ3zw

E. REAL-LIFE DEPLOYMENT OF THE DIAFORUS NETWORK

Figure E.4: Testing the inter-area communication to decrease the intrusion detection la-
tency

the more correlation it can operate before sending an alarm to the operator to limit
false positives. On the contrary, areas closer to the protected zone should require less
correlation to lower the detection latency at the expense of false positives.

Deployment We deployed two areas, an area in the protected zone and an area of
interest. The protected area has three sensors: two infrared barriers and a simulated
seismic sensor. The area of interest has two simulated seismic sensor and a SPIRIT.

Result A pedestrian crossing the area of interest needs to trip the two seismic sensors
and the SPIRIT before an alarm is sent. In the protected area, only two sensors are
necessary before an alarm is sent to the operator. The result can be seen in Figure E.5
and on Youtube, at http://youtu.be/ws_s0SvBae8.

Figure E.5: Testing different area sensitivities

E.2.4 D - In-network network notification

Operational need An operator may be in an area and would like to configure it, read
its history or receive alarms when they arrive using a laptop or a tablet. This operator
would however not be interested in getting alarms from other areas.

190

http://youtu.be/ws_s0SvBae8

E.2 Tested scenarios

Deployment Two areas are deployed both containing multiple sensors. The main
operator can access alarms and monitor nodes from both areas using CoAP. The mobile
operator only receives alarms from the zone he/she is currently located in.

Result A simulated pedestrian penetrates the first area and trips enough sensors to
trigger an alarm. Only the main operator receives the alarm. When the pedestrian enters
the second area and trips enough sensors, both operators receive the alarm. The result
can be seen in Figure E.6 and on Youtube, at http://youtu.be/OkNqI5PYujc.

Figure E.6: Testing different area sensitivities

E.2.5 E - Fault tolerance

Operational need Wireless nodes can fail at any time. When they do, the network
should also autonomously react to this loss and reconfigure itself to operate properly.
This includes finding other communication routes and changing the criticality threshold
of the area to react to the loss of the sensors attached to the failing node. Finally, the
operator needs to be warned about this failure.

Deployment We only deployed two infrared barriers. One of the barrier (node 3) is
connected to the other one (node 2) to reach node 1, the gateway and correlation node.
Node 3 cannot reach node 1 and has to go through node 1 or node 7 first.

Result An alarm is generated when both sensors are tripped by a simulated a pedes-
trian intrusion. Node 2 is then disabled and another intrusion is simulated. An alarm is
triggered after tripping node 3’s barrier. This means node 3 reconfigured its route to reach
the correlating node by going through node 7 instead of node 2. It also means that the
correlation node reconfigured itself to take into account the loss of one sensor. The opera-
tor is advertised about the loss of node 2 by turning the node’s symbol from black to red.
The result can be seen in Figure E.7 and on Youtube, at http://youtu.be/QBxLTj57El8.

191

http://youtu.be/OkNqI5PYujc
http://youtu.be/QBxLTj57El8

E. REAL-LIFE DEPLOYMENT OF THE DIAFORUS NETWORK

(a) Before node 2 failed (b) After node 2 failed

Figure E.7: Result of an intrusion before and after node 2 failed

E.2.6 F - Protecting a civilian farm

Operational need The deployment of the wireless sensor network should be as easily
as possible. The final demonstration scenario aims at protecting a farm to alert the police
in case of an intrusion.

Deployment We installed two areas in the vicinity of the farm to be protected. One
area containing two infrared barriers is located on the pathway leading to the farm. The
second area, in front of the farm, contains one seismic sensor and a SPIRIT.

Result We see an operator installing the network by taking advantage of the terrain.
The configuration and flashing of the nodes was done off-camera using the Diase and
the build network firmware-generation script. Then, a pedestrian runs to the farm along
the pathway leading to the farm, tripping both barriers. He then is picked up by the
SPIRIT of the second area before being detected by the seismic sensor. By the time he
reaches the farm, an alarm is sounded, deterring the intruder. The result can be seen in
Figure E.8 and on Youtube, at http://youtu.be/Nfa31KqW4F8.

Figure E.8: Final deployment of the DIAFORUS system to protect a farm

192

http://youtu.be/Nfa31KqW4F8

Appendix F

Demodulating unknown signals

In Chapter 4, we introduced the idea that it should be possible to demodulate signals
in real time without prior-knowledge of their PHY parameters. In this appendix, we
show that we started working on such a system and already have promising results.

F.1 Studying an OOK signal

Figure F.1: Exemple of a received OOK signal

In Figure F.1, we can see the OOK modulation that is often used by car keys and
remote controls. In this case, the signal got generated by Chacon’s DI-O, a remote
control to turn on or off up to 3 power plug. The signal has been decoded in real time
and the output of our system is the following:

5: new communication, time = 1570 µs, len = 143205 samples, len_time = 71602 µs,
sub-burst = 66, avg_pwr = 218% above threshold (31.432 vs noise mag max 3.602)

OOK: Unknown OFF symbol 5475

193

F. DEMODULATING UNKNOWN SIGNALS

New message: modulation = ’OOK, ON(0 bps) = { 491.9 (p=1.00), 0.0 (p=0.00) },

OFF(1 bps) = { 612.7 (p=0.49), 2676.8 (p=0.49) },

freq = nan MHz (chan = 0)’, sub messages = 1, process time = 30971 µs
Sub msg 0, OOK, ON(0 bps) = { 246.0 µs, -1.0 µs },

OFF(1 bps) = { 306.3 µs, 1338.4 µs },

STOP = { -1.0 µs }, freq = 433.920 MHz (chan = 35): len = 64:

BIN: 0101 1001 0110 0110 0110 1001 1010 1010 1001 0110 0101 0110 1001 0101

0101 0101

HEX: 59 66 69 aa 96 56 95 55

Manchester code detected:

BIN: 0010 0101 0110 1111 1001 0001 1000 0000

HEX: 25 6f 91 80

The communication started 1.5 ms after we started listening and lasted 143205 samples
which is equivalent to 71.6 ms. It is composed of 66 bursts of energy while the received
power was about 10 times superior than the average noise power and 2 times higher than
the power threshold.

A message has been decoded from those 66 bursts. The modulation is indeed a OOK.
The ON time is constant (491.9 samples in average) which means that it is not coding
any information. The OFF time is however coding 1 bit per symbol as the time can
either be 612.7 or 2676.8 samples. The probability of having one time off or the other is
however the same which suggests that a Manchester code is being used. A OFF symbol
was however unrecognised as it lasted 5475 samples. Based on Figure F.1, we can guess
that it is a start bit. No stop bit got detected as the message did not repeat itself. The
frequency at which the message has been sent is 433.92 MHz which is equivalent to the
channel 35 in this frequency band. The actual len in bit of the received data is 64 bytes
and the time it took to demodulate the frame was 31 ms. Even though the program has
been run in Debug mode, it still takes less time to demodulate the message than it took
to receive it.

The received data is first shown in binary before showing an hexadecimal version.
As the received data only contains 01 and 10 sequences, our program detects that the
message has been sent with a Manchester code. It then displays the decoded message
without the Manchester code.

Using multiple frames, we managed to identify the meaning of every bit of the trans-
mission and managed to understand which button was pressed on the remote control
that generated the signal.

F.2 Studying a PSK signal

We then demonstrate the output of a 2-PSK modulation, as received by a bladerf very
close to the emitter. The received signal can be seen in Figure F.2 with the decoded
information available right after it.

194

F.2 Studying a PSK signal

Figure F.2: Exemple of a received 2-PSK signal

0: new communication, time = 1015 µs, len = 77876 samples, len_time = 77876 µs,
sub-burst = 2, avg_pwr = 4116% above threshold (2134 vs noise mag max 12.96)

New message: modulation = ’2-PSK: freq offset = 99.6 kHz, symbol time = 100 µs’,
sub messages = 1, process time = 26537 µs
Sub msg 0: len = 369:

BIN: 0000 0000 0000 0000 0000 1000 0000 0110 1111 1111 1111 1111 1111 1111 1111

1111 1111 1111 1111 1111 1010 1110 0010 1010 0100 0100 0001 0101 1111 0010

1001 1001 0000 1000 0000 0110 0000 0000 0000 0001 0000 1000 0000 0000 0000

0110 0000 0100 0000 0000 0000 0001 1010 1110 0010 1010 0100 0100 0001 0101

1111 0010 1001 1001 1100 0000 1010 1000 0000 0010 0000 0001 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 1100 0000 1010 1000 0000 0010

0000 0010 0

HEX: 00 00 08 06 ff ff ff ff ff ff ae 2a 44 15 f2 99 08 06 00 01 08 00 06 04 00

01 ae 2a 44 15 f2 99 c0 a8 02 01 00 00 00 00 00 00 c0 a8 02 02 (0)

Contrarily to the previous signal, the modulation used for this signal is detected as
being 2-PSK with a symbol rate of 10 000 symbols per second. The frequency offset
between the received transmission and the SW radio’s central frequency was 99.6 kHz.
This suggests that the clocks of both radios are not perfectly running at the same speed.

The processing time of the frame was 26.5 ms, still much shorter than the 77.9 ms it
took for the transmission to finish.

The received data is actually an ARP request from the MAC address AE:2A:44:15:F2:99
to the broadcast destination (FF:FF:FF:FF:FF:FF) to find the IP address 192.168.2.1
with the source IP address is 192.168.2.2.

195

F. DEMODULATING UNKNOWN SIGNALS

F.3 Conclusion

We showcased our decoding system using frames sent using two different modulations.
The system was able in both cases to detect without any prior knowledge the modulation
type, find the symbols, which ones are coding data, the symbol rate and even if the
message was using a code or not.

Our system is however not very mature yet but we are working on improving its features
to be more efficient and more robust in low-SNR scenarios.

196

Appendix G

A ring buffer data structure
suited for software-defined radios

The following listing defines a ring-buffer data structure that is suited for software-
defined radios. It allows its users to annotate the sample stream with the parameters of
the radio to enable dynamic switching of the radio’s parameters while still keeping the
current data available.

It also enables its user to synchronise the time and the frequency domain thanks to
the global index given to every sample of the stream which allows an FFT to reference
the samples used for its calculation.

More information can be found in the comments of the data structure.

Listing G.1: ringbuffer.h

1 /∗∗

2 ∗ \ f i l e r i n g bu f f e r . h
3 ∗ \ author MuPuF (Martin Peres <martin . pe r e s@ labr i . f r >)
4 ∗ \ ve r s i on 1 .0
5 ∗ \date 07 Avr i l 2013
6 ∗/
7
8 #i f n d e f RINGBUFFER H
9 #de f i n e RINGBUFFER H

10
11 #inc lude <boost / thread /mutex . hpp>
12
13 #inc lude <s tdde f . h>
14 #inc lude <atomic>
15 #inc lude < l i s t >
16
17 /∗∗

18 ∗ \ c l a s s RingBuffer
19 ∗ \ b r i e f De f ine s a template−based r ing bu f f e r con ta ine r that never b locks
20 ∗ and a l s o a l l ows to annotate e lements with meta−data .
21 ∗

22 ∗ \ d e t a i l s The f i r s t property i s important f o r app l i c a t i o n s that want a cache
23 ∗ f o r the l a t e s t n e lements o f a stream r e g a r d l e s s o f who i s going
24 ∗ to read them . The po int i s that the producer should never be
25 ∗ blocked . The problem with that property i s that consumers cannot
26 ∗ l o ck the content they are read ing so i t can be overr idden by the

197

G. A RING BUFFER DATA STRUCTURE SUITED FOR SDRS

27 ∗ producer at any time . This means that the consumer should be
28 ∗ ab le to check i f the data i t read i s c o r r e c t . This r e s u l t s in
29 ∗ mul t ip l e c a l l s f o r read ing .
30 ∗

31 ∗ The second property i s important when some meta−data need to be
32 ∗ attached to the samples such as the time at which they have been
33 ∗ taken in s c e n a r i o s where the sampling ra t e i s n ’ t f i x e d . This
34 ∗ i n c r e a s e s the complexity o f the r ing bu f f e r as both the meta data
35 ∗ and the data cannot be added at the same time . For t h i s reason , a
36 ∗ s t ag ing area i s int roduced by t h i s c l a s s to keep an atomic commit
37 ∗ o f both the data and i t s meta−data .
38 ∗

39 ∗ ∗∗Thread−s a f e t y :∗∗ There can be only one producer without l o ck ing .
40 ∗ Mult ip l e consumers are ok .
41 ∗

42 ∗ ### Examples ###
43 ∗

44 ∗ #### Writing data ####
45 ∗

46 ∗ Here i s a func t i on that would add samples to a #RingBuffer .
47 ∗

48 ∗ void writeSamples (RingBuffer<int , bool> &rb , const i n t ∗ samples ,
49 ∗ s i z e t length , bool marker)
50 ∗ {
51 ∗ u in t 64 t s ta r tPos = head . load () ;
52 ∗

53 ∗ whi le (l ength > 0)
54 ∗ {
55 ∗ i n t ∗ rbData ;
56 ∗ s i z e t writeLen = requestWrite (length , &r) ;
57 ∗

58 ∗ memcpy(rbData , samples , writeLen ∗ s i z e o f (Sample)) ;
59 ∗

60 ∗ // prepare f o r the next loop
61 ∗ samples += writeLen ;
62 ∗ l ength −= writeLen ;
63 ∗ }
64 ∗ rb . addMarker (marker , s ta r tPos) ;
65 ∗ rb . va l idateWr i t e () ;
66 ∗ }
67 ∗

68 ∗ #### Reading data ####
69 ∗

70 ∗ Here i s a func t i on that would read samples from a #RingBuffer .
71 ∗

72 ∗ bool readSamples (RingBuffer<int , bool> &rb , u i n t 64 t pos ,
73 ∗ Sample ∗ samples , s i z e t l ength)
74 ∗ {
75 ∗ u in t 64 t s ta r tPos = pos ;
76 ∗ whi le (l ength > 0)
77 ∗ {
78 ∗ i n t ∗ rbData ;
79 ∗ s i z e t wantedLength = length ;
80 ∗

81 ∗ s i z e t rdLen = requestRead (pos , &wantedLength , &rbData) ;
82 ∗ memcpy(samples , wantedLength , rbData) ;
83 ∗

84 ∗ // prepare f o r the next loop
85 ∗ samples += rdLen ;
86 ∗ pos += rdLen ;
87 ∗ l ength −= rdLen ;
88 ∗ }
89 ∗ r e turn r i ngBu f f e r . i sPo s i t i o nVa l i d (s ta r tPos) ;

198

90 ∗ }
91 ∗

92 ∗/
93 template <c l a s s Sample , c l a s s Marker>
94 c l a s s RingBuffer
95 {
96 protec t ed :
97 s i z e t r i n g l e n g t h ; ///< The length o f the r ing bu f f e r
98 std : : auto ptr<Sample> r i n g ; ///< The r ing bu f f e r
99

100 std : : atomic<u int64 t> newHead ; ///< The head o f the s tag ing area
101 std : : atomic<u int64 t> head ; ///< The head o f the pub l i c area
102 std : : atomic<u int64 t> t a i l ; ///< The t a i l o f the r ing bu f f e r
103
104 /// St ruc ture to a s s o c i a t e markers to t h e i r p o s i t i o n s
105 s t r u c t MarkerInterna l
106 {
107 u in t 64 t pos ; ///< Pos i t i on o f the marker
108 Marker m; ///< The marker
109 } ;
110 boost : : mutex markersMutex ; ///< Mutex to p ro t e c t the markers ’ l i s t
111 std : : l i s t <MarkerInternal> markers ; ///< The markers ’ l i s t
112
113 /// Same as #requestRead , but without boundary checks
114 void requestRead unsa fe (u i n t 64 t pos , s i z e t ∗ l ength , Sample ∗∗ samples)
115 {
116 s i z e t packe tS i z e = ∗ l ength ;
117
118 /∗ check that we won ’ t be wrapping around ∗/
119 i f ((pos % r i n g l e n g t h) + packetS i z e >= r i n g l e n g t h)
120 packetS i z e = (r i n g l e n g t h − (pos % r i n g l e n g t h)) ;
121
122 ∗ samples = (r i n g . get () + (pos % r i n g l e n g t h)) ;
123 ∗ l ength = packetS i z e ;
124 }
125
126 pub l i c :
127
128 /∗∗

129 ∗ \ b r i e f Construct a new r ing bu f f e r
130 ∗

131 ∗ \param s i z e The maximum number o f e lements to be s to r ed in the r ing
bu f f e r .

132 ∗ \ r e turn Nothing .
133 ∗/
134 RingBuf fer (s i z e t s i z e) : r i n g l e n g t h (s i z e) ,
135 r i n g (new Sample [s i z e ∗ s i z e o f (Sample)]) , newHead (0) , head (0) ,
136 t a i l (0)
137 {
138 }
139
140 /∗∗

141 ∗ \ b r i e f Returns the maximum number o f e lements that can be s to r ed in
the r ing bu f f e r .

142 ∗ \ r e turn The maximum number o f e lements that can be s to r ed in the r ing
bu f f e r .

143 ∗/
144 s i z e t r ingLength () const { r e turn r i n g l e n g t h ; }
145
146 /∗∗

147 ∗ \ b r i e f Returns the number o f e lements cu r r en t l y s to r ed in the r ing
bu f f e r .

148 ∗ \ r e turn The number o f e lements cu r r en t l y s to r ed in the r ing bu f f e r .

199

G. A RING BUFFER DATA STRUCTURE SUITED FOR SDRS

149 ∗/
150 s i z e t s i z e () const
151 {
152 re turn head . load () − t a i l . load () ;
153 }
154
155 /∗∗

156 ∗ \ b r i e f Checks i f a p o s i t i o n in the r ing bu f f e r i s a v a i l a b l e or not
157 ∗ \ r e turn True i f the p o s i t i o n i s ava i l ab l e , f a l s e o therw i se .
158 ∗/
159 bool i sPo s i t i o nVa l i d (u i n t 64 t pos) const
160 {
161 re turn pos >= t a i l . load () && pos < head . load () ;
162 }
163
164 /∗∗

165 ∗ \ b r i e f Checks i f the r e are n e n t r i e s a v a i l a b l e in the r ing bu f f e r
s t a r t i n g from pos .

166 ∗ \ r e turn True i f the r e should be .
167 ∗/
168 bool hasNAvailableFrom (u in t 64 t pos , s i z e t n) const
169 {
170 re turn (pos + n) < head . load () ;
171 }
172
173 /∗∗

174 ∗ \ b r i e f Returns head ’ s p o s i t i o n
175 ∗ \ r e turn Returns the po s i t i o n o f the head
176 ∗/
177 u in t 64 t head () const
178 {
179 re turn head . load () ;
180 }
181
182 /∗∗

183 ∗ \ b r i e f Returns t a i l ’ s p o s i t i o n
184 ∗ \ r e turn Returns the po s i t i o n o f the t a i l
185 ∗/
186 u in t 64 t t a i l () const
187 {
188 re turn t a i l . load () ;
189 }
190
191 /∗∗

192 ∗ \ b r i e f Empties the r ing bu f f e r and markers .
193 ∗

194 ∗ \ r e turn Nothing .
195 ∗/
196 void c l e a r ()
197 {
198 markersMutex . l o ck () ;
199
200 newHead = 0 ;
201 head = 0 ;
202 t a i l = 0 ;
203
204 markers . c l e a r () ;
205
206 markersMutex . unlock () ;
207 }
208
209 /∗∗

210 ∗ \ b r i e f Request read ing the N l a s t e lements o f the r ing bu f f e r

200

211 ∗

212 ∗ \warning The data may be changed by the producer whi l e another
213 ∗ thread i s read ing data . To ensure that data hasn ’ t been
214 ∗ overr iden , the reader must c a l l #i sPo s i t i o nVa l i d with
215 ∗ \a pos as a parameter . I f the func t i on r e tu rn s true ,
216 ∗ then the data i s s a f e to use . Otherwise , the data must be
217 ∗ d i s ca rded .
218 ∗

219 ∗ \param [in] n The number o f e lements you want to read
220 ∗ \param [out] s ta r tPos Sto r e s the po s i t i o n o f the f i r s t element in
221 ∗ the r ing bu f f e r .
222 ∗ \param [out] r e s t a r tPo s Sto r e s the r e s t a r t p o s i t i o n in the case where
223 ∗ not a l l e lement can be read in a row .
224 ∗ \param [out] samples S to r e s the po in t e r at which data i s a v a i l a b l e .
225 ∗ Make sure to only read up to the number
226 ∗ returned by t h i s func t i on which can be lower
227 ∗ than \a n .
228 ∗

229 ∗ \ r e turn The samples o f e lements that can be read . The number can be
230 ∗ lower than what has been reques ted due to the r ing bu f f e r ’ s wrap
231 ∗ around . In t h i s case , one should c a l l #requestRead with \a r e s t a r tPo s
232 ∗ as a s t a r t i n g po s i t i o n .
233 ∗

234 ∗ \ sa #requestRead , #i sPo s i t i onVa l i d , #addSamples , #requestWrite
235 ∗/
236 s i z e t requestReadLastN (s i z e t n , u i n t 64 t ∗ startPos , u i n t 64 t ∗ r e s ta r tPos

, Sample ∗∗ samples)
237 {
238 i n t 6 4 t wantedPos = head . load () − n ;
239 s i z e t packe tS i z e = n ;
240
241 /∗ check the re are at l e a s t n e lements ∗/
242 i f (s i z e () < n) {
243 packetS i z e = 0 ;
244 i f (s ta r tPos)
245 ∗ s ta r tPos = wantedPos ;
246 i f (r e s t a r tPo s)
247 ∗ r e s t a r tPo s = wantedPos ;
248 i f (samples)
249 ∗ samples = NULL;
250 } e l s e {
251 /∗ check that we won ’ t be wrapping around ∗/
252 i f ((wantedPos % r i n g l e n g t h) + n >= r i n g l e n g t h)
253 packetS i z e = (r i n g l e n g t h − (wantedPos %

r i n g l e n g t h)) ;
254
255 i f (s ta r tPos)
256 ∗ s ta r tPos = wantedPos ;
257 i f (r e s t a r tPo s)
258 ∗ r e s t a r tPo s = wantedPos + packetS i z e ;
259 i f (samples)
260 ∗ samples = (r i n g . get () + (wantedPos %

r i n g l e n g t h)) ;
261 }
262
263 re turn packetS i z e ;
264 }
265
266 /∗∗

267 ∗ \ b r i e f Request read ing e lements from the r ing bu f f e r
268 ∗

269 ∗ \warning The data may be changed by the producer whi l e another
270 ∗ thread i s read ing data . To ensure that data hasn ’ t been

201

G. A RING BUFFER DATA STRUCTURE SUITED FOR SDRS

271 ∗ overr iden , the reader must c a l l #i sPo s i t i o nVa l i d with
272 ∗ \a pos as a parameter . I f the func t i on r e tu rn s true ,
273 ∗ then the data i s s a f e to use . Otherwise , the data must be
274 ∗ d i s ca rded .
275 ∗

276 ∗ \param [in] pos The s t a r t i n g po s i t i o n in the r ing bu f f e r from
277 ∗ which data should be read .
278 ∗ \param [in , out] l ength S p e c i f i e s how many elements should be read .
279 ∗ I t a l s o r e tu rn s the number o f e lements that
280 ∗ are a c t ua l l y readab le .
281 ∗ \param [out] samples S to r e s the po in t e r at which data i s a v a i l a b l e .
282 ∗ Make sure to only read up to \a l ength
283 ∗ e lements . Warning , \a l ength can be lower
284 ∗ than the reques ted value .
285 ∗

286 ∗ \ r e turn True i f the p o s i t i o n i s a v a i l a b l e and data can be read
287 ∗ from i t . Fa l se o therw i s e .
288 ∗

289 ∗ \ sa #requestReadLastN , #i sPo s i t i onVa l i d , #addSamples , #requestWrite
290 ∗/
291 bool requestRead (u in t 64 t pos , s i z e t ∗ l ength , Sample ∗∗ samples)
292 {
293 i f (! i sPo s i t i o nVa l i d (pos)) {
294 ∗ l ength = 0 ;
295 re turn f a l s e ;
296 }
297
298 /∗ check that we aren ’ t t ry ing to read f u r t h e r than head () ∗/
299 i f (pos + ∗ l ength > head . load ())
300 ∗ l ength = head . load () − pos ;
301
302 requestRead unsa fe (pos , length , samples) ;
303 re turn true ;
304 }
305
306 /∗∗

307 ∗ \ b r i e f Request wr i t i ng new elements to the r ing bu f f e r
308 ∗

309 ∗ \ d e t a i l s This func t i on should be p r e f e r ed over #addSamples because
310 ∗ i t avo ids an uncessary copy .
311 ∗

312 ∗ \warning The data added w i l l be staged but not made pub l i c u n t i l
313 ∗ #val idateWr i t e i s c a l l e d . This s t ag ing area i s meant to l e t
314 ∗ deve l ope r s add both data and markers be f o r e making
315 ∗ them pub l i c .
316 ∗

317 ∗ \param [in] l ength The number o f e lements to be wr i t t en .
318 ∗ \param [out] samples S to r e s the po in t e r at which data should be
319 ∗ wr i t t en .
320 ∗ Make sure to only wr i t e up to the number o f
321 ∗ e lements returned by the func t i on .
322 ∗

323 ∗ \ r e turn The number o f e lements that can be wr i t t en at \a samples .
324 ∗ WARNING: This number may be lower than \a l ength .
325 ∗

326 ∗ \ sa #addSamples , #val idateWrite , #requestRead , #requestReadLastN
327 ∗/
328 s i z e t requestWrite (s i z e t length , Sample ∗∗ samples)
329 {
330 u in t 64 t t a i l = t a i l . load () ;
331 u in t 64 t newHead = newHead . load () ;
332 s i z e t packetS i z e = length ;
333 requestRead unsa fe (newHead , &packetS ize , samples) ;

202

334 u in t 64 t wantedNewHead = newHead + packetS i z e ;
335
336 i f ((newHead . load () − t a i l . load ()) + packetS i z e >= r i n g l e n g t h)

{
337 // r e s e r v e the space in the r ing bu f f e r
338 u in t 64 t wantedTail = wantedNewHead − r i n g l e n g t h ;
339 i f (wantedTail > head . load ())
340 head . s t o r e (wantedTail) ;
341 t a i l . s t o r e (wantedTail) ;
342
343 /∗ de l e t e the markers that have been overr idden ∗/
344 typename std : : l i s t <MarkerInternal > : : i t e r a t o r i t = markers .

begin () ;
345 whi l e (i t != markers . end () && (∗ i t) . pos >= t a i l && (∗ i t) .

pos < wantedTail)
346 i t = markers . e r a s e (i t) ;
347 }
348
349 newHead . s t o r e (wantedNewHead) ;
350
351 re turn packetS i z e ;
352 }
353
354 /∗∗

355 ∗ \ b r i e f Flush the s tag ing area and make the newly−added data pub l i c
356 ∗

357 ∗ \ d e t a i l s When data i s added , i t i s s taged and not made pub l i c u n t i l
358 ∗ #val idateWr i t e i s c a l l e d . This s t ag ing area i s meant to l e t
359 ∗ deve l ope r s add both data and markers be f o r e making
360 ∗ them pub l i c .
361 ∗

362 ∗ \ r e turn Nothing .
363 ∗

364 ∗ \ sa #requestWrite , #addSamples
365 ∗/
366 void va l idateWr i t e ()
367 {
368 head . s t o r e (newHead . load ()) ;
369 }
370
371 /∗∗

372 ∗ \ b r i e f Write new elements to the r ing bu f f e r
373 ∗

374 ∗ \warning This func t i on should be avoided as p o s s i b l e . P lease p r e f e r
375 ∗ avo id ing a copy by us ing #requestWrite .
376 ∗

377 ∗ \warning The data added w i l l be staged but not made pub l i c u n t i l
378 ∗ #val idateWr i t e i s c a l l e d . This s t ag ing area i s meant to l e t
379 ∗ deve l ope r s add both data and markers be f o r e making
380 ∗ them pub l i c .
381 ∗

382 ∗ \param [in] samples The samples to be wr i t t en to the r ing bu f f e r
383 ∗ \param [in] l ength The number o f e lements from samples to be
384 ∗ added to the r ing bu f f e r .
385 ∗

386 ∗ \ r e turn The address o f the f i r s t element added to the r ing bu f f e r .
387 ∗

388 ∗ \ sa #requestWrite , #val idateWrite , #requestRead , #requestReadLastN
389 ∗/
390 u in t 64 t addSamples (const Sample ∗ samples , s i z e t l ength)
391 {
392 u in t 64 t begin = head . load () ;
393

203

G. A RING BUFFER DATA STRUCTURE SUITED FOR SDRS

394 whi l e (l ength > 0)
395 {
396 Sample ∗ r ;
397 s i z e t packe tS i z e = requestWrite (length , &r) ;
398
399 memcpy(r , samples , packe tS i z e ∗ s i z e o f (Sample)) ;
400
401 // prepare f o r the next loop
402 samples += packetS i z e ;
403 l ength −= packetS i z e ;
404 }
405
406 re turn begin ;
407 }
408
409 /∗∗

410 ∗ \ b r i e f Add a marker at a s p e c i f i c p o s i t i o n
411 ∗

412 ∗ \param [in] marker The marker to be added
413 ∗ \param [in] pos The po s i t i o n at which the marker \a marker
414 ∗ should be added . I f a marker a l r eady e x i s t s at
415 ∗ t h i s p o s i t i o n . I t w i l l be r ep l aced by
416 ∗ the new marker \a marker . The marker should be
417 ∗ s to r ed in added in the s tag ing area otherwise ,
418 ∗ the func t i on w i l l r e turn f a l s e .
419 ∗

420 ∗ \ r e turn True i f the p o s i t i o n was va l i d and the marker has been
421 ∗ added . Fa l se i f the po s i t i o n was i n v a l i d (p o s i t i o n not in
422 ∗ the s tag ing area) .
423 ∗

424 ∗ \ sa #getMarker , #findMarker
425 ∗/
426 bool addMarker (Marker marker , u i n t 64 t pos)
427 {
428 i f (! (pos >= head . load () && pos < newHead . load ()))
429 re turn f a l s e ;
430
431 markersMutex . l o ck () ;
432
433 MarkerInterna l m = {pos , marker } ;
434
435 typename std : : l i s t <MarkerInternal > : : r e v e r s e i t e r a t o r r i t ;
436 f o r (r i t = markers . rbeg in () ; r i t != markers . rend () ; ++r i t) {
437 i f ((∗ r i t) . pos == pos) {
438 (∗ r i t) .m = marker ;
439 } e l s e i f ((∗ r i t) . pos < pos) {
440 markers . i n s e r t (r i t . base () , m) ;
441 goto e x i t ;
442 }
443 }
444
445 markers . push f ront (m) ;
446
447 e x i t :
448 markersMutex . unlock () ;
449 re turn true ;
450 }
451
452 /∗∗

453 ∗ \ b r i e f Get a marker at a known po s i t i o n
454 ∗

455 ∗ \param [in] markerPos The po s i t i o n at which the marker should be
456 ∗ r e t r i e v e d .

204

457 ∗ \param [out] marker S to r e s the r e t r i e v e d marker .
458 ∗

459 ∗ \ r e turn True i f the marker has been r e t r i e v ed , f a l s e o therw i se .
460 ∗

461 ∗ \ sa #findMarker , #addMarker
462 ∗/
463 bool getMarker (u i n t 64 t markerPos , Marker ∗marker)
464 {
465 typename std : : l i s t <MarkerInternal > : : r e v e r s e i t e r a t o r r i t ;
466 bool r e t = f a l s e ;
467
468 markersMutex . l o ck () ;
469 f o r (r i t = markers . rbeg in () ; r i t != markers . rend () ; ++r i t) {
470 i f ((∗ r i t) . pos == markerPos) {
471 ∗marker = (∗ r i t) .m;
472 r e t = true ;
473 break ;
474 }
475 }
476 markersMutex . unlock () ;
477
478 re turn r e t ;
479 }
480
481 /∗∗

482 ∗ \ b r i e f Find the marker r i g h t be f o r e a po s i t i o n
483 ∗

484 ∗ \param [in] pos The po s i t i o n from which the marker should be
485 ∗ searched f o r .
486 ∗ \param [out] marker S to r e s the r e t r i e v e d marker .
487 ∗ \param [out] markerPos Sto r e s the marker ’ s p o s i t i o n
488 ∗

489 ∗ \ r e turn True i f a marker has been found , f a l s e o the rw i se .
490 ∗

491 ∗ \ sa #getMarker , #addMarker
492 ∗/
493 bool f indMarker (u i n t 64 t pos , Marker ∗marker , u i n t 64 t ∗markerPos)
494 {
495 bool r e t = f a l s e ;
496
497 i f (! i sPo s i t i o nVa l i d (pos))
498 re turn f a l s e ;
499
500 markersMutex . l o ck () ;
501 typename std : : l i s t <MarkerInternal > : : r e v e r s e i t e r a t o r r i t =

markers . rbeg in () ;
502
503 whi l e (r i t != markers . rend () && (∗ r i t) . pos > pos)
504 ++r i t ;
505
506 i f (r i t != markers . rend ()) {
507 ∗marker = (∗ r i t) .m;
508 ∗markerPos = (∗ r i t) . pos ;
509 r e t = true ;
510 }
511
512 markersMutex . unlock () ;
513
514 re turn r e t ;
515 }
516 } ;
517
518 #end i f // RINGBUFFER H

205

G. A RING BUFFER DATA STRUCTURE SUITED FOR SDRS

206

Bibliography

[1] jjgarcia.tsc, “Carrier sense multiple access with collision avoid-
ance,” 2011, page Version ID: 628813304. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Carrier sense multiple access
with collision avoidance&oldid=628813304 xi, 10

[2] “Network topology,” Dec. 2014, page Version ID: 636339599. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Network topology&oldid=
636339599 xi, 14

[3] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Enhanced jump-stay rendezvous algo-
rithm for cognitive radio networks,” IEEE Communications Letters, vol. 17, no. 9,
pp. 1742–1745, Sep. 2013. xii, 47, 67, 68

[4] R. Doost-Mohammady, P. Paweczak, G. Janssen, and H. Segers, “Physical layer
bootstrapping protocol for cognitive radio networks,” in 2010 7th IEEE Consumer
Communications and Networking Conference (CCNC), Jan. 2010, pp. 1–5. xii, 48,
67, 68

[5] Juha Pennanen, John Hoversten, and Sasa Radovanonic, “Envelope tracking for
cellular RF power amplifiers | PowerGuru - power electronics information portal,”
Mar. 2014. [Online]. Available: https://www.powerguru.org/envelope-tracking-
for-cellular-rf-power-amplifiers/ xii, 78

[6] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kan-
demir, and V. Narayanan, “Leakage current: Moore’s law meets static power,”
Computer, vol. 36, no. 12, pp. 68–75, 2003. xii, 17, 81, 82

[7] H. Cha, R. J. Hasslen III, J. A. Robinson, S. J. Treichler, and A. U. Diril, “Power
estimation based on block activity,” U.S. Patent 8 060 765, Nov., 2011. [Online].
Available: http://www.freepatentsonline.com/8060765.html xii, 91, 92

[8] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann, “Power-
management architecture of the intel microarchitecture code-named sandy bridge,”
IEEE Micro, vol. 32, no. 2, pp. 20–27, Mar. 2012. xii, xiii, 89, 92, 93, 95, 96

[9] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy
consumption in mobile phones: A measurement study and implications for
network applications,” in Proceedings of the 9th ACM SIGCOMM Conference on

207

https://en.wikipedia.org/w/index.php?title=Carrier_sense_multiple_access_with_collision_avoidance&oldid=628813304
https://en.wikipedia.org/w/index.php?title=Carrier_sense_multiple_access_with_collision_avoidance&oldid=628813304
https://en.wikipedia.org/w/index.php?title=Network_topology&oldid=636339599
https://en.wikipedia.org/w/index.php?title=Network_topology&oldid=636339599
https://www.powerguru.org/envelope-tracking-for-cellular-rf-power-amplifiers/
https://www.powerguru.org/envelope-tracking-for-cellular-rf-power-amplifiers/
http://www.freepatentsonline.com/8060765.html

BIBLIOGRAPHY

Internet Measurement Conference, ser. IMC ’09. New York, NY, USA: ACM, 2009,
pp. 280–293. [Online]. Available: http://doi.acm.org/10.1145/1644893.1644927
xiii, 111, 112, 113, 114

[10] ARM, “big.LITTLE technology - ARM,” Tech. Rep., 2011. [Online]. Avail-
able: http://arm.com/products/processors/technologies/biglittleprocessing.php
xiii, 115

[11] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst, “hwloc: A generic framework for managing
hardware affinities in HPC applications.” IEEE, Feb. 2010, pp. 180–186. [Online].
Available: http://hal.inria.fr/inria-00429889 xiii, 116

[12] A. M. Tamasi, P. B. Johnson, F. R. Diard, and B. M. Kelleher, “Optimizing power
and performance for multi-processor graphics processing,” U.S. Patent 7 721 118,
May, 2010. [Online]. Available: http://www.freepatentsonline.com/7721118.html
xiii, 117, 118

[13] SenseFly, “senseFly. swinglet CAM,” 2010. [Online]. Available: https:
//www.sensefly.com/drones/swinglet-cam.html xiv, 142

[14] Google, “Loon for all - project loon - google,” 2013. [Online]. Available:
http://www.google.com/loon/ xiv, 143

[15] Amazon, “Amazon prime air,” 2014. [Online]. Available: http:
//www.amazon.com/b?node=8037720011 xiv, 143

[16] Quaduro systems, “QuadPad v12 IP54 semi rugged tablet PC,” 2011. [Online].
Available: http://www.quaduro.com/en/gb/products/src.php?id=5 xiv, 144

[17] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling MAC
protocol implementations on software-defined radios,” in Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation, ser.
NSDI’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 91–105. xvii,
48, 56

[18] D. HISKEY, “This day in history: Martin cooper publicly demonstrates
the world’s first handheld mobile phone,” Apr. 2012. [Online]. Avail-
able: http://www.todayifoundout.com/index.php/2012/04/this-day-in-history-
martin-cooper-publicly-demonstrates-the-worlds-first-handheld-mobile-phone/ 1

[19] C. Pirlogea and C. Cicea, “Econometric perspective of the energy consumption
and economic growth relation in european union,” Renewable and Sustainable
Energy Reviews, vol. 16, no. 8, pp. 5718–5726, Oct. 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364032112003905 7

[20] B. Plumer, “Can we sever the link between energy and eco-
nomic growth?” The Washington Post, Jan. 2014. [Online]. Avail-
able: http://www.washingtonpost.com/blogs/wonkblog/wp/2014/01/17/can-we-
sever-the-link-between-energy-and-growth/ 7

208

http://doi.acm.org/10.1145/1644893.1644927
http://arm.com/products/processors/technologies/biglittleprocessing.php
http://hal.inria.fr/inria-00429889
http://www.freepatentsonline.com/7721118.html
https://www.sensefly.com/drones/swinglet-cam.html
https://www.sensefly.com/drones/swinglet-cam.html
http://www.google.com/loon/
http://www.amazon.com/b?node=8037720011
http://www.amazon.com/b?node=8037720011
http://www.quaduro.com/en/gb/products/src.php?id=5
http://www.todayifoundout.com/index.php/2012/04/this-day-in-history-martin-cooper-publicly-demonstrates-the-worlds-first-handheld-mobile-phone/
http://www.todayifoundout.com/index.php/2012/04/this-day-in-history-martin-cooper-publicly-demonstrates-the-worlds-first-handheld-mobile-phone/
http://www.sciencedirect.com/science/article/pii/S1364032112003905
http://www.washingtonpost.com/blogs/wonkblog/wp/2014/01/17/can-we-sever-the-link-between-energy-and-growth/
http://www.washingtonpost.com/blogs/wonkblog/wp/2014/01/17/can-we-sever-the-link-between-energy-and-growth/

BIBLIOGRAPHY

[21] EPA, “EPA report to congress on server and data center energy efficiency,” Tech.
Rep., 2007. [Online]. Available: http://hightech.lbl.gov/documents/data centers/
epa-datacenters.pdf 7, 76

[22] “TIC et développement durable,” Mar. 2009, les technologies de l’information et de
la communication (TIC) peuvent permettre d’économiser de 1 à 4 fois leurs propres
émissions de gaz à effet de serre mais, à l’inverse, ils constituent désormais le premier
poste de consommation d’électricité des ménages. Le rapport évalue l’impact des
TIC sur le développement durable et propose des politiques pour le futur. [Online].
Available: http://www.ladocumentationfrancaise.fr/rapports-publics/094000118/
7

[23] F. Krief, Green Networking. John Wiley & Sons, Dec. 2012. 7, 8, 11, 18

[24] GeSI, “GeSI SMARTer2020: The role of ICT in driving a sustainable future,”
Tech. Rep., Dec. 2012. [Online]. Available: http://gesi.org/SMARTer2020 8

[25] A. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, “A survey of green networking
research,” IEEE Communications Surveys Tutorials, vol. 14, no. 1, pp. 3–20, 2012.
8

[26] K.-L. Du and M. N. S. Swamy, Wireless Communication Systems: From RF Sub-
systems to 4G Enabling Technologies. Cambridge University Press, Apr. 2010.
8

[27] J.-l. Yang, W.-j. Yang, and G.-q. Xu, “Blind estimation of carrier frequency and
symbol rate based on cyclic spectrum density,” Procedia Engineering, vol. 29, pp.
514–519, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1877705811065908 9

[28] A. Furuskar, S. Mazur, F. Muller, and H. Olofsson, “EDGE: enhanced data rates for
GSM and TDMA/136 evolution,” IEEE Personal Communications, vol. 6, no. 3,
pp. 56–66, Jun. 1999. 9

[29] L. E. Frenzel, Principles of electronic communication systems. McGraw-Hill, 2008.
9

[30] I. Akbar, “Power from the void?: How steve perlman’s ”revolutionary” wireless
technology works and why it is a bigger deal than anyone realizes.” IEEE Consumer
Electronics Magazine, vol. 3, no. 3, pp. 36–43, Jul. 2014. 9

[31] B. Wang and K. Liu, “Advances in cognitive radio networks: A survey,” IEEE
Journal of Selected Topics in Signal Processing, vol. 5, no. 1, pp. 5–23, Feb. 2011.
10

[32] K. K. Khedo, R. Perseedoss, and A. Mungur, “A wireless sensor network air pol-
lution monitoring system,” CoRR, vol. abs/1005.1737, 2010. 11

209

http://hightech.lbl.gov/documents/data_centers/epa-datacenters.pdf
http://hightech.lbl.gov/documents/data_centers/epa-datacenters.pdf
http://www.ladocumentationfrancaise.fr/rapports-publics/094000118/
http://gesi.org/SMARTer2020
http://www.sciencedirect.com/science/article/pii/S1877705811065908
http://www.sciencedirect.com/science/article/pii/S1877705811065908

BIBLIOGRAPHY

[33] G. Werner-allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Monitoring volcanic
eruptions with a wireless sensor network,” in in Proceedings of the Second European
Workshop on Wireless Sensor Networks (EWSN’05, 2005. 11

[34] M. Hefeeda and M. Bagheri, Forest Fire Modeling and Early Detection using Wire-
less Sensor Networks, 2009. 11

[35] R. Morello, C. De Capua, and A. Meduri, “Remote monitoring of building struc-
tural integrity by a smart wireless sensor network,” in Instrumentation and Mea-
surement Technology Conference (I2MTC), 2010 IEEE, May 2010, pp. 1150 –1154.
11

[36] M. Peres, R. Perier, and F. Krief, “Overcoming the deficiencies of collaborative
detection of spatially-correlated events in WSN,” in Advanced Infocomm
Technology, ser. Lecture Notes in Computer Science, V. Guyot, Ed. Springer
Berlin Heidelberg, Jul. 2012, no. 7593, pp. 243–257. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-642-38227-7 27 11

[37] Wave2m community, “Wave2m - the platform in-depth,” 2008. [Online]. Available:
http://www.wave2m.org/the-specification/the-platform-in-depth?view=item 11,
12, 188

[38] Stop Smart Meters Australia, “Privacy issues,” 2014. [Online]. Available:
http://stopsmartmeters.com.au/privacy-issues/ 11

[39] Q. Wang, M. Hempstead, and W. Yang, “A realistic power consumption model
for wireless sensor network devices,” in 2006 3rd Annual IEEE Communications
Society on Sensor and Ad Hoc Communications and Networks, 2006. SECON ’06,
vol. 1, Sep. 2006, pp. 286–295. 12, 22

[40] Marcin Brzozowski and Peter Langendoerfer, “Multi-channel support for preamble
sampling MAC protocols in sensor networks,” in The 22nd International Conference
on Software, Telecommunications and Computer Networks (SoftCOM 2014), Split,
Croatia, Sep. 2014. 12

[41] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “DESYNC: Self-organizing desynchro-
nization and TDMA on wireless sensor networks,” in 6th International Symposium
on Information Processing in Sensor Networks, 2007. IPSN 2007, Apr. 2007, pp.
11–20. 13

[42] G. Allard, V. Genc, and J. Yelloz, “Fully distributed clock synchronization in
wide-range TDMA ad-hoc networks,” in MILITARY COMMUNICATIONS CON-
FERENCE, 2011 - MILCOM 2011, Nov. 2011, pp. 920–925. 13

[43] D. Doronin and D. Fakhriev, “Distributed clock synchronization algorithm for
wide-range TDMA ad hoc networks,” in Wireless Access Flexibility, ser. Lecture
Notes in Computer Science, G. Bianchi, A. Lyakhov, and E. Khorov, Eds.
Springer Berlin Heidelberg, Jan. 2013, no. 8072, pp. 112–124. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-642-39805-6 10 13

210

http://link.springer.com/chapter/10.1007/978-3-642-38227-7_27
http://www.wave2m.org/the-specification/the-platform-in-depth?view=item
http://stopsmartmeters.com.au/privacy-issues/
http://link.springer.com/chapter/10.1007/978-3-642-39805-6_10

BIBLIOGRAPHY

[44] T. Herman and S. Tixeuil, “A distributed TDMA slot assignment algorithm for
wireless sensor networks,” in Algorithmic Aspects of Wireless Sensor Networks,
ser. Lecture Notes in Computer Science, S. E. Nikoletseas and J. D. P. Rolim, Eds.
Springer Berlin Heidelberg, Jan. 2004, no. 3121, pp. 45–58. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-27820-7 6 13

[45] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum,
L. Viennot, and others, “Optimized link state routing protocol (OLSR),” 2003. 14

[46] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better approach to
mobile ad-hoc networking (BATMAN),” IETF draft, October, 2008. 14

[47] I. D. Chakeres and E. M. Belding-Royer, “AODV routing protocol implementation
design,” in Proceedings of the 24th International Conference on Distributed
Computing Systems Workshops - W7: EC (ICDCSW’04) - Volume 7, ser.
ICDCSW ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.
698–703. [Online]. Available: http://dl.acm.org/citation.cfm?id=977399.977938
14

[48] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in
sensor networks,” SIGMOD Rec., vol. 31, no. 3, pp. 9–18, Sep. 2002. [Online].
Available: http://doi.acm.org/10.1145/601858.601861 14

[49] N. Sadagopan, B. Krishnamachari, and A. Helmy, “Active query forwarding in
sensor networks,” Journal of Ad Hoc Networks, vol. 3, pp. 91–113, 2005. 14

[50] C. Chaudet, N. Costagliola, I. Demeure, S. Ktari, and S. Tardieu, “Building an
efficient overlay for publish/subscribe in wireless sensor networks,” in 2012 9th
Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), Jun. 2012, pp. 362–370. 15, 26

[51] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-
munication protocol for wireless microsensor networks,” in Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, 2000, Jan. 2000, pp.
10 pp. vol.2–. 15, 24

[52] Tim Winter, “RPL: IPv6 routing protocol for low-power and lossy networks,”
Mar. 2012. [Online]. Available: https://tools.ietf.org/html/rfc6550 15, 23, 36

[53] L. Zhiyuan, “Geographic routing protocol and simulation,” in Second International
Workshop on Computer Science and Engineering, 2009. WCSE ’09, vol. 2, Oct.
2009, pp. 404–407. 16

[54] G. Schaefer, F. Ingelrest, and M. Vetterli, “Potentials of opportunistic routing in
energy-constrained wireless sensor networks,” Cork, Ireland, Feb. 2009. [Online].
Available: http://rr.epfl.ch/19/ 16

211

http://link.springer.com/chapter/10.1007/978-3-540-27820-7_6
http://dl.acm.org/citation.cfm?id=977399.977938
http://doi.acm.org/10.1145/601858.601861
https://tools.ietf.org/html/rfc6550
http://rr.epfl.ch/19/

BIBLIOGRAPHY

[55] G. S. Aujla and S. S. Kang, “Comprehensive evaluation of AODV, DSR, GRP,
OLSR and TORA routing protocols with varying number of nodes and traffic ap-
plications over MANETs,” Apr. 2013. 16

[56] G. Mulligan, “The 6lowpan architecture,” in Proceedings of the 4th Workshop on
Embedded Networked Sensors, ser. EmNets ’07. New York, NY, USA: ACM,
2007, pp. 78–82. [Online]. Available: http://doi.acm.org/10.1145/1278972.1278992
16

[57] B. Frank, Z. Shelby, K. Hartke, and C. Bormann, “Constrained application
protocol (CoAP),” Oct. 2010. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-core-coap-03 16, 33, 36

[58] N. Schlumpf, M. Declercq, and C. Dehollaini, “A fast modulator for dynamic supply
linear RF power amplifier,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7,
pp. 1015–1025, Jul. 2004. 17, 78

[59] D. Talbot, “Beyond CES hype lies a big battery problem. here’s how
the wireless industry is racing to fix it.” Jan. 2014. [Online]. Avail-
able: http://www.technologyreview.com/news/523286/the-hottest-technology-
not-on-display-at-ces-smart-radio-chips/ 17

[60] S. Chung, P. A. Godoy, T. W. Barton, E. W. Huang, D. J. Perreault, and J. L.
Dawson, “Asymmetric multilevel outphasing architecture for multi-standard trans-
mitters,” in Radio Frequency Integrated Circuits Symposium, 2009. RFIC 2009.
IEEE. IEEE, 2009, pp. 237–240. 17, 79

[61] R. R. Schaller, “Moore’s law: Past, present, and future,” IEEE Spectr., vol. 34,
no. 6, pp. 52–59, Jun. 1997. [Online]. Available: http://dx.doi.org/10.1109/
6.591665 17

[62] J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends
in the electrical efficiency of computing,” Annals of the History of Computing,
IEEE, vol. 33, no. 3, pp. 46 –54, Mar. 2011. 17, 22, 25

[63] D. R. Suleiman, M. A. Ibrahim, and I. I. Hamarash, Dynamic Voltage Frequency
Scaling (dvfs) for Microprocessors Power and Energy Reduction, 2005. 17

[64] V. K. Srikantam and A. R. Clark II, “Method and apparatus for clock gating clock
trees to reduce power dissipation,” U.S. Patent 6 822 481, Nov., 2004. [Online].
Available: http://www.freepatentsonline.com/6822481.html 18

[65] J. Kephart and D. Chess, “The vision of autonomic computing,” Computer, vol. 36,
no. 1, pp. 41–50, 2003. 18, 77, 105

[66] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: a survey,” Computer Networks, vol. 38, pp. 393–422, 2002. 22

212

http://doi.acm.org/10.1145/1278972.1278992
https://tools.ietf.org/html/draft-ietf-core-coap-03
https://tools.ietf.org/html/draft-ietf-core-coap-03
http://www.technologyreview.com/news/523286/the-hottest-technology-not-on-display-at-ces-smart-radio-chips/
http://www.technologyreview.com/news/523286/the-hottest-technology-not-on-display-at-ces-smart-radio-chips/
http://dx.doi.org/10.1109/6.591665
http://dx.doi.org/10.1109/6.591665
http://www.freepatentsonline.com/6822481.html

BIBLIOGRAPHY

[67] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “Wireless sensor net-
works for environmental monitoring: The SensorScope experience,” in 2008 IEEE
International Zurich Seminar on Communications, Mar. 2008, pp. 98–101. 23

[68] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data
aggregation in wireless sensor networks,” in Proceedings of the 22nd International
Conference on Distributed Computing Systems, ser. ICDCSW ’02. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 575–578. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646854.708078 24

[69] H. Letian and L. Guangjun, “A reconfigurable system for digital signal processing,”
in Signal Processing, 2008. ICSP 2008. 9th International Conference on, Oct. 2008,
pp. 439 –442. 25

[70] S. Croce, F. Marcelloni, and M. Vecchio, “Reducing power consumption in
wireless sensor networks using a novel approach to data aggregation,” The
Computer Journal, vol. 51, no. 2, pp. 227–239, Mar. 2008. [Online]. Available:
http://comjnl.oxfordjournals.org/content/51/2/227 25

[71] B. Lazzerini, F. Marcelloni, M. Vecchio, S. Croce, and E. Monaldi, “A fuzzy ap-
proach to data aggregation to reduce power consumption in wireless sensor net-
works,” in Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual
meeting of the North American, Jun. 2006, pp. 436 –441. 25

[72] A. Nasipuri, Collaborative Detection of Spatially Correlated Signals in Sensor Net-
works, Dallas, Texas, Nov. 2005, vol. Proceedings of the 2005 International Con-
ference on Telecommunication Systems Modeling and Analysis. 25

[73] A. V. U. Phani Kumar, A. M. Reddy V, and D. Janakiram, “Distributed
collaboration for event detection in wireless sensor networks,” in Proceedings of
the 3rd international workshop on Middleware for pervasive and ad-hoc computing,
ser. MPAC ’05. New York, NY, USA: ACM, 2005, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1101480.1101491 25

[74] Y. He, M. Li, and Y. Liu, “Collaborative query processing among
heterogeneous sensor networks,” in Proceedings of the 1st ACM international
workshop on Heterogeneous sensor and actor networks, ser. HeterSanet
’08. New York, NY, USA: ACM, 2008, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/1374699.1374705 25

[75] D. Andersson, M. Fong, and A. Valdes, Heterogeneous Sensor Correlation: A Case
Study of Live Traffic Analysis, 2002. 25

[76] T. Clouqueur, P. Ramanathan, K. K. Saluja, and K.-c. Wang, “Value-fusion
versus decision-fusion for fault-tolerance in collaborative target detection in
sensor networks,” in proceedings of fourth international conference on information
fusion, p. pp., 2001. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.116.6587 25, 27

213

http://dl.acm.org/citation.cfm?id=646854.708078
http://comjnl.oxfordjournals.org/content/51/2/227
http://doi.acm.org/10.1145/1101480.1101491
http://doi.acm.org/10.1145/1374699.1374705
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.6587
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.6587

BIBLIOGRAPHY

[77] E. Ould-Ahmed-Vall, B. Heck Ferri, and G. Riley, “Distributed fault-tolerance for
event detection using heterogeneous wireless sensor networks,” Mobile Computing,
IEEE Transactions on, vol. PP, no. 99, p. 1, 2011. 25

[78] J. Harrison, “A short survey of automated reasoning,” in Proceedings
of the 2Nd International Conference on Algebraic Biology, ser. AB’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 334–349. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1769026.1769050 26

[79] F. Portoraro, “Automated reasoning,” in The Stanford Encyclopedia of
Philosophy, summer 2014 ed., E. N. Zalta, Ed., 2010. [Online]. Available:
http://plato.stanford.edu/archives/sum2014/entries/reasoning-automated/ 27

[80] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless
sensor networks,” Computer Communications, vol. 30, no. 14–15, pp. 2826–2841,
Oct. 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0140366407002162 31

[81] LaBRI, “Diaforus,” 2010, [Online; accessed 25-May-2012]. [Online]. Available:
https://diaforus.labri.fr/doku.php 35

[82] M. Simon, J. Omura, R. Scholtz, and B. Levitt, Spread Spectrum Communications
Handbook, Electronic Edition. The McGraw-Hill Companies, Inc., 1994. 44

[83] Nuand, “bladeRF x40 | nuand,” 2013. [Online]. Available: http://www.nuand.com/
blog/product/bladerf-x40/ 47, 55, 62

[84] C.-S. Hsu, Y.-S. Chen, and C.-E. He, “An efficient dynamic adjusting MAC pro-
tocol for multichannel cognitive wireless networks,” in 2010 IEEE International
Conference on Wireless Communications, Networking and Information Security
(WCNIS), Jun. 2010, pp. 556–560. 47

[85] C. Cordeiro and K. Challapali, “C-MAC: A cognitive MAC protocol for multi-
channel wireless networks,” in 2nd IEEE International Symposium on New Fron-
tiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007, Apr. 2007, pp.
147–157. 47

[86] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dy-
namic spectrum access/cognitive radio wireless networks: A survey,” COMPUTER
NETWORKS JOURNAL (ELSEVIER, vol. 50, pp. 2127–2159, 2006. 47

[87] Ettus Research, “USRP1,” 2005. [Online]. Available: https://www.ettus.com/
product/details/USRPPKG 48, 56

[88] ——, “USRP hardware driver™,” 2006. [Online]. Available: http://code.ettus.com/
redmine/ettus/projects/uhd/wiki 48

[89] Martin Peres, “mupuf/hachoir,” 2013. [Online]. Available: https://github.com/
mupuf/hachoir 52, 62, 168

214

http://dl.acm.org/citation.cfm?id=1769026.1769050
http://plato.stanford.edu/archives/sum2014/entries/reasoning-automated/
http://www.sciencedirect.com/science/article/pii/S0140366407002162
http://www.sciencedirect.com/science/article/pii/S0140366407002162
https://diaforus.labri.fr/doku.php
http://www.nuand.com/blog/product/bladerf-x40/
http://www.nuand.com/blog/product/bladerf-x40/
https://www.ettus.com/product/details/USRPPKG
https://www.ettus.com/product/details/USRPPKG
http://code.ettus.com/redmine/ettus/projects/uhd/wiki
http://code.ettus.com/redmine/ettus/projects/uhd/wiki
https://github.com/mupuf/hachoir
https://github.com/mupuf/hachoir

BIBLIOGRAPHY

[90] A. P.S and M. Jayasheela, “Cyclostationary feature detection in cognitive radio
using different modulation schemes,” International Journal of Computer Applica-
tions, vol. 47, no. 21, pp. 12–16, Jun. 2012. 53

[91] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive
radio applications,” IEEE Communications Surveys Tutorials, vol. 11, no. 1, pp.
116–130, 2009. 53

[92] Abhilasha Singh and Anita Sharma, “A survey of various defense tech-
niques to detect primary user emulation attacks - inpressco,” International
Journal of Current Engineering and Technology International Journal of
Current Engineering and Technology Vol4, No.2, Apr. 2014. [Online].
Available: http://inpressco.com/a-survey-of-various-defense-techniques-to-detect-
primary-user-emulation-attacks/ 53

[93] Ettus Research, “USRP x300,” 2014. [Online]. Available: https://www.ettus.com/
product/details/X300-KIT 56, 57

[94] Nordic Semiconductor, “nRF24l01 - ultra low power 2.4ghz RF transceiver
IC,” Jul. 2007. [Online]. Available: http://www.nordicsemi.com/eng/Products/
2.4GHz-RF/nRF24L01 66

[95] “Aalto talk with linus torvalds [full-length],” Jun. 2012. [Online]. Available:
https://www.youtube.com/watch?v=MShbP3OpASA&t=2894s 76

[96] Nouveau Community, “Nouveau, the community-driven open source NVIDIA
driver,” 2006. [Online]. Available: http://nouveau.freedesktop.org/wiki/ 76

[97] Nouveau, “Envytools - tools for people envious of nvidia’s blob driver.” 2009.
[Online]. Available: https://github.com/envytools/envytools 77, 86, 88, 169

[98] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “TimeGraph:
GPU scheduling for real-time multi-tasking environments,” in Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Conference, ser.
USENIXATC’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 2–2.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2002181.2002183 77

[99] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class GPU
resource management in the operating system,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference, ser. USENIX ATC’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 37–37. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342821.2342858 77

[100] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro, “Data transfer matters
for GPU computing,” in 2013 International Conference on Parallel and Distributed
Systems (ICPADS), Dec. 2013, pp. 275–282. 77

215

http://inpressco.com/a-survey-of-various-defense-techniques-to-detect-primary-user-emulation-attacks/
http://inpressco.com/a-survey-of-various-defense-techniques-to-detect-primary-user-emulation-attacks/
https://www.ettus.com/product/details/X300-KIT
https://www.ettus.com/product/details/X300-KIT
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
https://www.youtube.com/watch?v=MShbP3OpASA&t=2894s
http://nouveau.freedesktop.org/wiki/
https://github.com/envytools/envytools
http://dl.acm.org/citation.cfm?id=2002181.2002183
http://dl.acm.org/citation.cfm?id=2342821.2342858

BIBLIOGRAPHY

[101] S. Kato, J. Aumiller, and S. Brandt, “Zero-copy i/o processing for low-latency
GPU computing,” in Proceedings of the ACM/IEEE 4th International Conference
on Cyber-Physical Systems, ser. ICCPS ’13. New York, NY, USA: ACM, 2013,
pp. 170–178. [Online]. Available: http://doi.acm.org/10.1145/2502524.2502548 77

[102] K. Wang, X. Ding, R. Lee, S. Kato, and X. Zhang, “GDM: Device memory
management for gpgpu computing,” in The 2014 ACM International Conference
on Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’14. New York, NY, USA: ACM, 2014, pp. 533–545. [Online]. Available:
http://doi.acm.org/10.1145/2591971.2592002 77

[103] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “GPUvm: Why not virtualizing
GPUs at the hypervisor?” in 2014 USENIX Annual Technical Conference
(USENIX ATC 14). Philadelphia, PA: USENIX Association, Jun. 2014, pp.
109–120. [Online]. Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/suzuki 77

[104] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and S. Kato, “Power and
performance analysis of GPU-accelerated systems,” in Proceedings of the 2012
USENIX conference on Power-Aware Computing and Systems, ser. HotPower’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387869.2387879 77, 86, 100

[105] ——, “Power and performance characterization and modeling of GPU-
accelerated systems,” in IEEE International Parallel & Distributed Process-
ing Symposium 2014, PHOENIX (Arizona), USA, 2014. [Online]. Avail-
able: http://phd.mupuf.org/publication/2014/05/19/power-and-performance-
characterization-and-modeling-of-gpu-accelerated-systems/ 77, 86, 101, 103, 120

[106] Martin Peres, “Reverse engineering power management on NVIDIA GPUs
- anatomy of an autonomic-ready system,” in ECRTS, Operating Systems
Platforms for Embedded Real-Time applications 2013, Jul. 2013. [Online]. Avail-
able: http://phd.mupuf.org/publication/2013/07/09/reverse-engineering-power-
management-on-nvidia-gpus/ 77, 94

[107] ——, “Reverse engineering power management on NVIDIA GPUs - a detailed
overview,” in X.Org Developer’s Conference 2013, Sep. 2013. [Online]. Avail-
able: http://phd.mupuf.org/publication/2013/09/25/reverse-engineering-power-
management-on-nvidia-gpus/ 77

[108] C. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU architecture,”
IEEE Micro, vol. 31, no. 2, pp. 50–59, 2011. 79

[109] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling:
the laws of diminishing returns,” in Proceedings of the 2010 international
conference on Power aware computing and systems, ser. HotPower’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924920.1924921 80, 101, 102, 114, 120

216

http://doi.acm.org/10.1145/2502524.2502548
http://doi.acm.org/10.1145/2591971.2592002
https://www.usenix.org/conference/atc14/technical-sessions/presentation/suzuki
https://www.usenix.org/conference/atc14/technical-sessions/presentation/suzuki
http://dl.acm.org/citation.cfm?id=2387869.2387879
http://phd.mupuf.org/publication/2014/05/19/power-and-performance-characterization-and-modeling-of-gpu-accelerated-systems/
http://phd.mupuf.org/publication/2014/05/19/power-and-performance-characterization-and-modeling-of-gpu-accelerated-systems/
http://phd.mupuf.org/publication/2013/07/09/reverse-engineering-power-management-on-nvidia-gpus/
http://phd.mupuf.org/publication/2013/07/09/reverse-engineering-power-management-on-nvidia-gpus/
http://phd.mupuf.org/publication/2013/09/25/reverse-engineering-power-management-on-nvidia-gpus/
http://phd.mupuf.org/publication/2013/09/25/reverse-engineering-power-management-on-nvidia-gpus/
http://dl.acm.org/citation.cfm?id=1924920.1924921

BIBLIOGRAPHY

[110] G. Klimeck, “ECE 606 lecture 25: Modern MOSFETs,” 2012. [Online]. Available:
https://nanohub.org/resources/16055/watch?resid=16068&tmpl=component 81

[111] T. Vogelsang, “Understanding the energy consumption of dynamic random access
memories,” in 2010 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), Dec. 2010, pp. 363–374. 82

[112] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob, “Technology comparison for
large last-level caches (l3cs): Low-leakage SRAM, low write-energy STT-RAM, and
refresh-optimized eDRAM,” in 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA2013), Feb. 2013, pp. 143–154. 83

[113] R. Evans and P. Franzon, “Energy consumption modeling and optimization for
SRAM’s,” IEEE Journal of Solid-State Circuits, vol. 30, no. 5, pp. 571–579, May
1995. 83

[114] Micron Technology, Inc., “Wear leveling in micron NAND flash memory,”
2011. [Online]. Available: http://www.micron.com/-/media/documents/products/
technicalnote/nandflash/tn2961 wear leveling in nand.pdf 83

[115] Texas Instruments, Inc., “MSP430x2xx family user’s guide,” 2013. [Online].
Available: http://www.ti.com/lit/ug/slau144j/slau144j.pdf 84

[116] NVIDIA, “NVIDIA SDR (software defined radio) technology,” 2013. [Online].
Available: http://www.nvidia.com/docs/IO//116757/NVIDIA i500 whitepaper
FINALv3.pdf 85, 153

[117] USB Implementers Forum, Inc., “A technical introduction to USB 2.0,” 2001.
[Online]. Available: http://www.usb.org/developers/whitepapers/usb 20g.pdf 85

[118] PCI-SIG, “PCI-SIG - specifications,” 1992. [Online]. Available: https:
//www.pcisig.com/specifications/ 85

[119] ——, “PCI express,” 2013. [Online]. Available: http://www.pcisig.com/
specifications/pciexpress/resources/ 85

[120] Intel/Microsoft/Toshiba, “ACPI - advanced configuration & power interface,”
1996. [Online]. Available: http://www.acpi.info/ 85

[121] Thomas Pettazzoni, “Device tree for dummies,” 2013. [Online]. Avail-
able: http://events.linuxfoundation.org/sites/events/files/slides/petazzoni-device-
tree-dummies.pdf 86

[122] NVIDIA, “PerfKit,” 2006. [Online]. Available: https://developer.nvidia.com/
nvidia-perfkit 86

[123] ——, “CUDA profiling tools interface,” 2007. [Online]. Available: https:
//developer.nvidia.com/cuda-profiling-tools-interface 86

217

https://nanohub.org/resources/16055/watch?resid=16068&tmpl=component
http://www.micron.com/-/media/documents/products/technical note/nand flash/tn2961_wear_leveling_in_nand.pdf
http://www.micron.com/-/media/documents/products/technical note/nand flash/tn2961_wear_leveling_in_nand.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.nvidia.com/docs/IO//116757/NVIDIA_i500_whitepaper_FINALv3.pdf
http://www.nvidia.com/docs/IO//116757/NVIDIA_i500_whitepaper_FINALv3.pdf
http://www.usb.org/developers/whitepapers/usb_20g.pdf
https://www.pcisig.com/specifications/
https://www.pcisig.com/specifications/
http://www.pcisig.com/specifications/pciexpress/resources/
http://www.pcisig.com/specifications/pciexpress/resources/
http://www.acpi.info/
http://events.linuxfoundation.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
http://events.linuxfoundation.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
https://developer.nvidia.com/nvidia-perfkit
https://developer.nvidia.com/nvidia-perfkit
https://developer.nvidia.com/cuda-profiling-tools-interface
https://developer.nvidia.com/cuda-profiling-tools-interface

BIBLIOGRAPHY

[124] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka, “Statistical
power modeling of GPU kernels using performance counters,” in Green Computing
Conference, 2010 International, 2010, pp. 115–122. 86, 92, 101, 120

[125] J. M. Alben, R. J. Hasslen III, and S. J. Treichler, “Clock throttling based
on activity-level signals,” U.S. Patent 7 958 483, Jun., 2011. [Online]. Available:
http://www.freepatentsonline.com/7958483.html 88

[126] Taylor Kidd, “Power management states: P-states, c-states, and package c-states,”
Apr. 2014. [Online]. Available: https://software.intel.com/en-us/articles/power-
management-states-p-states-c-states-and-package-c-states 88, 89, 90

[127] Arjan van de Ven, “Some basics on CPU p states on intel processors
there seems to be a lot of. . . ,” Jun. 2013. [Online]. Available: https:
//plus.google.com/+ArjanvandeVen/posts/dLn9T4ehywL 89

[128] Nouveau Community, “Codenames of NVIDIA hardware,” 2008. [Online].
Available: http://nouveau.freedesktop.org/wiki/CodeNames/ 89

[129] Intel Corporation, “Intel® 64 and IA-32 architectures software developer
manuals,” Feb. 2014. [Online]. Available: http://www.intel.com/content/www/
us/en/processors/architectures-software-developer-manuals.html 94

[130] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using RAPL,” SIGMETRICS Perform.
Eval. Rev., vol. 40, no. 3, pp. 13–17, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2425248.2425252 94, 120

[131] D. Kanter, “Intel’s sandy bridge microarchitecture,” Sep. 2010. [Online]. Available:
http://www.realworldtech.com/sandy-bridge/9/ 95

[132] NVIDIA, “NVIDIA GeForce GTX 680,” 2012. [Online]. Avail-
able: http://www.geforce.com/Active/en US/en US/pdf/GeForce-GTX-680-
Whitepaper-FINAL.pdf 96

[133] M. Burtscher, I. Zecena, and Z. Zong, “Measuring GPU power with the k20
built-in sensor,” in Proceedings of Workshop on General Purpose Processing Using
GPUs, ser. GPGPU-7. New York, NY, USA: ACM, 2014, pp. 28:28–28:36.
[Online]. Available: http://doi.acm.org/10.1145/2576779.2576783 97

[134] Texas Instruments, “INA3221 - triple channel shunt and bus voltage monitor,”
May 2012. [Online]. Available: http://www.ti.com/product/ina3221 97

[135] NVIDIA, “NVIDIA x config options,” May 2014. [Online]. Available: http:
//us.download.nvidia.com/solaris/337.25/README/xconfigoptions.html 100

[136] Unigine Corp., “Heaven benchmark | unigine: real-time 3d engine (game,
simulation, visualization and VR),” Dec. 2013. [Online]. Available: https:
//unigine.com/products/heaven/ 103

218

http://www.freepatentsonline.com/7958483.html
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
https://plus.google.com/+ArjanvandeVen/posts/dLn9T4ehywL
https://plus.google.com/+ArjanvandeVen/posts/dLn9T4ehywL
http://nouveau.freedesktop.org/wiki/CodeNames/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://doi.acm.org/10.1145/2425248.2425252
http://www.realworldtech.com/sandy-bridge/9/
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://doi.acm.org/10.1145/2576779.2576783
http://www.ti.com/product/ina3221
http://us.download.nvidia.com/solaris/337.25/README/xconfigoptions.html
http://us.download.nvidia.com/solaris/337.25/README/xconfigoptions.html
https://unigine.com/products/heaven/
https://unigine.com/products/heaven/

BIBLIOGRAPHY

[137] Digital Content Protection, LLC, “High-bandwidth digital content protection
(HDCP),” 2001. [Online]. Available: http://www.digital-cp.com/ 106

[138] Alex Bradbury, “Open source ARM userland,” Oct. 2012. [Online]. Available:
http://www.raspberrypi.org/archives/2221 106

[139] Dave Airlie, “raspberry pi drivers are NOT useful,” Oct. 2012. [Online]. Available:
http://airlied.livejournal.com/76383.html 106

[140] E. Anholt, “new job!” Jun. 2014. [Online]. Available: http:
//anholt.livejournal.com/44239.html 107

[141] F. Broaekaert, A. Fristsch, L. San, and S. Tverdyshev, “Towards power-efficient
mixed critical systems,” in OSPERT 2013, 2013, pp. 30–35. [Online]. Available:
http://ertl.jp/∼shinpei/conf/ospert13/OSPERT13 proceedings web.pdf 110

[142] “ARM big.LITTLE technology explained,” Apr. 2014. [Online]. Available: https://
www.youtube.com/watch?v=KClygZtp8mA&feature=youtube gdata player 114

[143] P. McKenney, “A big.LITTLE scheduler update,” Jun. 2012. [Online]. Available:
https://lwn.net/Articles/501501/ 114, 133

[144] Linaro, “big.LITTLE software update,” Sep. 2013. [Online]. Available: http:
//www.linaro.org/blog/hardware-update/big-little-software-update/ 114

[145] M. Kim, K. Kim, J. Geraci, and S. Hong, “Utilization-aware load balancing for the
energy efficient operation of the big.LITTLE processor,” in Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2014, Mar. 2014, pp. 1–4.
115

[146] M. Pricopi, T. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin,
“Power-performance modeling on asymmetric multi-cores,” in 2013 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES), Sep. 2013, pp. 1–10. 115

[147] Y. Zhu and V. Reddi, “High-performance and energy-efficient mobile web brows-
ing on big/little systems,” in 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA2013), Feb. 2013, pp. 13–24. 115

[148] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.-A. Wacrenier,
“Dynamic task and data placement over NUMA architectures: An OpenMP
runtime perspective,” in Proceedings of the 5th International Workshop on
OpenMP: Evolving OpenMP in an Age of Extreme Parallelism, ser. IWOMP
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 79–92. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02303-3 7 116

[149] C. Rossignon, H. Pascal, O. Aumage, and S. Thibault, “A NUMA-aware
fine grain parallelization framework for multi-core architecture,” in PDSEC -
14th IEEE International Workshop on Parallel and Distributed Scientific and

219

http://www.digital-cp.com/
http://www.raspberrypi.org/archives/2221
http://airlied.livejournal.com/76383.html
http://anholt.livejournal.com/44239.html
http://anholt.livejournal.com/44239.html
http://ertl.jp/~shinpei/conf/ospert13/OSPERT13_proceedings_web.pdf
https://www.youtube.com/watch?v=KClygZtp8mA&feature=youtube_gdata_player
https://www.youtube.com/watch?v=KClygZtp8mA&feature=youtube_gdata_player
https://lwn.net/Articles/501501/
http://www.linaro.org/blog/hardware-update/big-little-software-update/
http://www.linaro.org/blog/hardware-update/big-little-software-update/
http://dx.doi.org/10.1007/978-3-642-02303-3_7

BIBLIOGRAPHY

Engineering Computing - 2013, Boston, États-Unis, May 2013. [Online]. Available:
http://hal.inria.fr/hal-00858350 116

[150] Runtime, INIRIA Bordeaux, “StarPU,” 2008. [Online]. Available: http:
//runtime.bordeaux.inria.fr/StarPU/ 118

[151] C. Augonnet, S. Thibault, and R. Namyst, “Automatic calibration of performance
models on heterogeneous multicore architectures,” Aug. 2009. [Online]. Available:
http://hal.inria.fr/inria-00421333 119

[152] L. Courtès, “C language extensions for hybrid CPU/GPU programming with
StarPU,” Apr. 2013. [Online]. Available: http://hal.inria.fr/hal-00807033 119

[153] M. Handley, O. Bonaventure, C. Raiciu, and A. Ford, “TCP extensions for
multipath operation with multiple addresses,” Jan. 2013. [Online]. Available:
https://tools.ietf.org/html/rfc6824 120

[154] Olivier Bonaventure, “Apple seems to also believe in multipath TCP,” Sep.
2013. [Online]. Available: https://perso.uclouvain.be/olivier.bonaventure/blog/
html/2013/09/18/mptcp.html 120

[155] J. Choi, S. Govindan, J. Jeong, B. Urgaonkar, and A. Sivasubramaniam, “Power
consumption prediction and power-aware packing in consolidated environments,”
IEEE Transactions on Computers, vol. 59, no. 12, pp. 1640–1654, 2010. 120

[156] J. Ylitalo, T. Jokikyyny, A. J. Tuominen, and J. Laine, “Dynamic network
interface selection in multihomed mobile hosts,” HAWAII INTL. CONF. ON
SYSTEM SCIENCES (HICSS, vol. 9, p. 315, 2003. [Online]. Available: http:
//citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.99.9062 120

[157] L. Liu, Y. Wei, Y. Bi, and J. Song, “Cooperative transmission and data scheduling
mechanism of multiple interfaces in multi-radio access environment,” in Global
Mobile Congress 2009, 2009, pp. 1–5. 120

[158] B. Hu, S. Chen, W. Ye, and X. Zhan, “An autonomic interface selection mecha-
nism for multi-interface host,” in 2012 8th International Conference on Wireless
Communications, Networking and Mobile Computing (WiCOM), 2012, pp. 1–5. 121

[159] M. Chowdhury, Y. M. Jang, C. S. Ji, S. Choi, H. Jeon, J. Jee, and C. Park,
“Interface selection for power management in UMTS/WLAN overlaying network,”
in 11th International Conference on Advanced Communication Technology, 2009.
ICACT 2009, vol. 01, 2009, pp. 795–799. 121

[160] P.-N. Tran and N. Boukhatem, “SiPiA: The shortest distance to positive ideal
attribute for interface selection,” in Telecommunication Networks and Applications
Conference, 2008. ATNAC 2008. Australasian, 2008, pp. 175–179. 121, 136

[161] M. Sowmia Devi and P. Agrawal, “Dynamic interface selection in portable multi-
interface terminals,” in IEEE International Conference on Portable Information
Devices, 2007. PORTABLE07, 2007, pp. 1–5. 121, 136

220

http://hal.inria.fr/hal-00858350
http://runtime.bordeaux.inria.fr/StarPU/
http://runtime.bordeaux.inria.fr/StarPU/
http://hal.inria.fr/inria-00421333
http://hal.inria.fr/hal-00807033
https://tools.ietf.org/html/rfc6824
https://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
https://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.99.9062
http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.99.9062

BIBLIOGRAPHY

[162] G. Castignani, N. Montavont, and A. Arcia-Moret, “Multi-objective optimization
model for network selection in multihomed devices,” in 2013 10th Annual Confer-
ence on Wireless On-demand Network Systems and Services (WONS), Mar. 2013,
pp. 113–115. 121

[163] K. Deb, Optimization For Engineering Design: Algorithms And Examples, 1995.
121

[164] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA — a platform
and programming language independent interface for search algorithms,” in
Evolutionary Multi-Criterion Optimization, ser. Lecture Notes in Computer
Science, C. M. Fonseca, P. J. Fleming, E. Zitzler, L. Thiele, and K. Deb, Eds.
Springer Berlin Heidelberg, Jan. 2003, no. 2632, pp. 494–508. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-36970-8 35 121, 137

[165] Martin Peres, “mupuf/RTGDE,” 2013. [Online]. Available: https://github.com/
mupuf/RTGDE 125, 128, 136, 138, 170

[166] J. Racine, “gnuplot 4.0: a portable interactive plotting utility,” Journal of
Applied Econometrics, vol. 21, no. 1, pp. 133–141, 2006. [Online]. Available:
http://ideas.repec.org/a/jae/japmet/v21y2006i1p133-141.html 128

[167] tcpdump, “Tcpdump/libpcap public repository,” 1987. [Online]. Available:
http://www.tcpdump.org/ 130

[168] Tyler Andrews, “Computation time comparison between mat-
lab and c++ using launch windows,” Jun. 2012. [On-
line]. Available: http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=
1080&context=aerosp 137

[169] SenseFly, “SenseFly: 07 - disaster management,” 2012. [Online]. Available:
https://www.sensefly.com/user-cases/07-disaster-management.html 142

[170] “OpenBTS | open source cellular infrastructure,” 2010. [Online]. Available:
http://openbts.org/ 142

[171] Intel, “PowerTOP,” 2012. [Online]. Available: https://01.org/powertop/ 150

[172] Neil Brown, “Control groups series by neil brown,” 2014. [Online]. Available:
https://lwn.net/Articles/604609/ 151

[173] K. Nichols, D. L. Black, S. Blake, and F. Baker, “Definition of the differentiated
services field (DS field) in the IPv4 and IPv6 headers,” Dec. 1998. [Online].
Available: https://tools.ietf.org/html/rfc2474 152

[174] “Inside the linux 2.6 completely fair scheduler,” Dec. 2009. [Online].
Available: http://www.ibm.com/developerworks/linux/library/l-completely-fair-
scheduler/ 152

221

http://link.springer.com/chapter/10.1007/3-540-36970-8_35
https://github.com/mupuf/RTGDE
https://github.com/mupuf/RTGDE
http://ideas.repec.org/a/jae/japmet/v21y2006i1p133-141.html
http://www.tcpdump.org/
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1080&context=aerosp
http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1080&context=aerosp
https://www.sensefly.com/user-cases/07-disaster-management.html
http://openbts.org/
https://01.org/powertop/
https://lwn.net/Articles/604609/
https://tools.ietf.org/html/rfc2474
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/

BIBLIOGRAPHY

[175] Texas Instruments, Inc., “MSP430™ SoC with RF core,” 2013. [Online]. Available:
http://www.ti.com/lit/ds/symlink/cc430f6137.pdf 160

[176] Martin Peres and Romain Perier, “mupuf/diaforus labri,” 2012. [Online].
Available: https://github.com/mupuf/diaforus labri 167

[177] Linus Torvalds, “Linux,” 1991. [Online]. Available: http://www.kernel.org 169

[178] Ben Skeggs, “Nouveau,” 2007. [Online]. Available: http://cgit.freedesktop.org/
∼darktama/nouveau/ 169

[179] Envytools, Envytools documentation on readthedocs, 2014. [Online]. Available:
https://envytools.readthedocs.org/en/latest/ 169

[180] Martin Peres, “mupuf/pdaemon trace,” 2014. [Online]. Available: https:
//github.com/mupuf/pdaemon trace 170

[181] Cortus, “Cortus - APS3r,” 2010. [Online]. Available: http://www.cortus.com/
aps3r.html 187

222

http://www.ti.com/lit/ds/symlink/cc430f6137.pdf
https://github.com/mupuf/diaforus_labri
http://www.kernel.org
http://cgit.freedesktop.org/~darktama/nouveau/
http://cgit.freedesktop.org/~darktama/nouveau/
https://envytools.readthedocs.org/en/latest/
https://github.com/mupuf/pdaemon_trace
https://github.com/mupuf/pdaemon_trace
http://www.cortus.com/aps3r.html
http://www.cortus.com/aps3r.html

	List of Figures
	List of Tables
	Glossary
	1 General introduction
	1.1 General Context
	1.2 Problems studied in this thesis
	1.2.1 Decentralising data processing
	1.2.2 Efficient spectrum sharing
	1.2.3 Hardware performance and power consumption
	1.2.4 Making run-time power management decisions
	1.2.5 Creating a green network for disaster relief services

	1.3 Outline of this thesis

	2 State of the art
	2.1 Wireless communications
	2.1.1 Transmitting information wirelessly
	2.1.2 Sharing the spectrum
	2.1.3 Applications for wireless communications

	2.2 Green wireless networks
	2.2.1 The overhearing problem
	2.2.2 Efficient routing algorithms
	2.2.3 Efficient protocols

	2.3 Computer architectures
	2.4 Autonomic Computing
	2.5 Conclusion

	3 Application & Network: Decentralised processing
	3.1 Introduction
	3.2 State of the art
	3.2.1 Direct communication
	3.2.2 Cluster-based Data Aggregation
	3.2.3 Local Event Detection
	3.2.4 Collaborative Detection

	3.3 Contributions
	3.3.1 Modality-agnostic Collaborative Detection of Spatio temporally Correlated Events
	3.3.2 Offline Logging Capabilities
	3.3.3 Sensors Reputation Management
	3.3.4 Summary

	3.4 Evaluation
	3.4.1 Modality-agnostic Collaborative Detection of Spatio temporally Correlated Events
	3.4.2 Sensors Reputation Management

	3.5 Real-life deployment
	3.6 Conclusion

	4 PHY/MAC: Efficient spectrum sharing
	4.1 Introduction
	4.2 State of the art
	4.2.1 Software-defined radios
	4.2.2 Cognitive Radio Networks

	4.3 Detecting transmissions with software radios
	4.3.1 Time Domain vs Frequency Domain
	4.3.2 Filtering in the frequency domain
	4.3.3 Decoding and collecting statistics
	4.3.4 Collaborative sensing
	4.3.5 Software & Hardware architectures for software radios

	4.4 PHY-layer signalling protocol
	4.4.1 Bootstrapping
	4.4.2 Advertising
	4.4.3 Scanning for other cognitive radios
	4.4.4 Updating the hopping pattern
	4.4.5 Keeping nodes' hopping pattern synchronised
	4.4.6 Evaluation
	4.4.7 Conclusion

	4.5 MAC-layer signalling protocol
	4.5.1 The WTS, RTR and RTS frames
	4.5.2 Selecting the modulation of the control frames
	4.5.3 Discussion

	4.6 Conclusion

	5 Hardware: Defining an autonomic low-power node
	5.1 Introduction
	5.2 General introduction to power management
	5.2.1 Voltage regulation
	5.2.2 Clocks
	5.2.3 Transistors
	5.2.4 Storing data : Registers, DRAM, SRAM and Flash
	5.2.5 Temperature management
	5.2.6 Power reading

	5.3 Power management features of modern processors
	5.3.1 Accelerators
	5.3.2 Introspection
	5.3.3 Clock and Power gating
	5.3.4 Dynamic Voltage/Frequency Scaling
	5.3.5 Thermal & power management
	5.3.6 Power Management Unit (PMU)
	5.3.7 The Boost feature

	5.4 Power and performance analysis in modern NVIDIA GPUs
	5.5 Analysing the reclocking policy of a Kepler NVIDIA GPU
	5.6 Can modern processors have autonomic power management?
	5.7 Conclusion

	6 OS: Making real-time power management decisions
	6.1 Introduction
	6.2 State of the art
	6.2.1 Network interface run-time selection
	6.2.2 Processor/Accelerator run-time selection
	6.2.3 Dynamic handovers
	6.2.4 Run-time power and performance management generic flowgraph

	6.3 Definition of an abstract decision flowgraph
	6.3.1 Decision flowgraph
	6.3.2 Metrics
	6.3.3 Prediction
	6.3.4 HW Models
	6.3.5 Scoring
	6.3.6 Decision

	6.4 Implementing the decision flowgraph in a framework
	6.4.1 Metrics
	6.4.2 Predictions
	6.4.3 Flowgraph
	6.4.4 Scoring
	6.4.5 Decision

	6.5 Evaluation
	6.5.1 Network selection WiFi / GSM
	6.5.2 Selecting performance levels and processors
	6.5.3 Performance evaluation

	6.6 Conclusion and future work

	7 Proposing a green network for disaster relief
	7.1 Defining the scenario
	7.2 Defining wireless nodes : network and system architecture
	7.2.1 Node type 1 : Aerial drones
	7.2.2 Node type 2 : A fully autonomic wireless tablet
	7.2.3 Node type 3 : An extremely low-power wireless sensor node

	7.3 Radio frequency : Continuously selecting the best RF bands
	7.4 Hardware requirements : Performance and availability
	7.4.1 Network
	7.4.2 Processors and accelerators
	7.4.3 Other peripherals

	7.5 Conclusion

	8 Conclusion
	8.1 General conclusion
	8.2 Future work
	8.2.1 Decentralised data processing in Wireless Networks
	8.2.2 Cognitive Radios Network
	8.2.3 Hardware
	8.2.4 Green networking with Energy-harvesting nodes

	Appendices
	A List of publications
	A.1 Book chapters
	A.1.1 Green Networking

	A.2 International conferences
	A.2.1 On optimizing energy consumption: An adaptative authentication level in wireless sensor networks
	A.2.2 Overcoming the Deficiencies of Collaborative Detection of Spatially correlated Events in WSN
	A.2.3 Power and Performance Characterization and Modeling of GPU-accelerated Systems
	A.2.4 PHY/MAC Signalling Protocols for Resilient Cognitive Radio Networks
	A.2.5 A run-time generic decision framework for power and performance management on mobile devices

	A.3 International Workshops
	A.3.1 Power and Performance Analysis of GPU-Accelerated Systems
	A.3.2 Reverse engineering power management on NVIDIA GPUs - Anatomy of an autonomic-ready system

	B List of Software Projects
	B.1 Decentralising data processing in surveillance networks
	B.1.1 Reasoning services
	B.1.2 Build network
	B.1.3 Diase

	B.2 Efficient spectrum sharing
	B.2.1 GR-GTSRC & Spectrum-viz
	B.2.2 Hachoir_UHD
	B.2.3 Non-real-time PHY simulator

	B.3 Defining an autonomic low-power node
	B.3.1 Nouveau
	B.3.2 Envytools
	B.3.3 PDAEMON tracing

	B.4 Making real-time power management decisions
	B.4.1 RTGDE

	C Diaforus : An example deployment file
	D DiaSE : DIAFORUS' Simulation Environment
	D.1 Deployment
	D.2 Running the network
	D.3 Scenario
	D.4 C2 : Command & Control
	D.5 Monitoring

	E Real-life deployment of the DIAFORUS Network
	E.1 Hardware used
	E.2 Tested scenarios
	E.2.1 A - Short-loop response
	E.2.2 B - Inter-area communication
	E.2.3 C - Per-area sensitivity settings
	E.2.4 D - In-network network notification
	E.2.5 E - Fault tolerance
	E.2.6 F - Protecting a civilian farm

	F Demodulating unknown signals
	F.1 Studying an OOK signal
	F.2 Studying a PSK signal
	F.3 Conclusion

	G A ring buffer data structure suited for SDRs
	Bibliography

