A deeper look into GPUs and the Linux Graphics
Stack

Martin Peres
CC By-SA 3.0

Nouveau developer
Ph.D. student at LaBRI

November 26, 2012

I - GPU & Hardware
®000

General overview

Outline

© ' - GPU & Hardware
@ General overview

I - GPU & Hardware
0e00

General overview

General overview of a modern GPU's functions

@ Display content on a screen

Accelerate 2D operations

°
@ Accelerate 3D operations
@ Decode videos

°

Accelerate scientific calculations

I - GPU & Hardware
coeo

General overview

Clocl Front-side
Graphics bus
card slot

Chipset

Memory Slots

High-speed
graphics bus

(AGP or PCI Northbridge [
Express) emo

(memory
controller hub)

Onboard

Southbridge graphics

(1/0 controller controller
hub)

IDE

SATA

LB Cables and

Audio Ceargeec ports leading

CMOS Memory off-board

PCl Slots

Super 1/0O

Serial Port

Flash ROM
(BIOS)

75

I - GPU & Hardware

[eJele]

General overview

Hardware architecture

Video RAM Power stage

Video outputs

T Y

Host communication bus
Source: http://www.flickr.com/photos/stefan_ledwina/557505323

GPU: Where all the calculations are made

VRAM: Stores the textures or general purpose data
Video Outputs: Connects to the screen(s)

Power stage: Lower the voltage, regulate current

Host communication bus: Communication with the CPU

I - GPU & Hardware
©000000

Driving screens

Outline
© ' - GPU & Hardware

@ Driving screens

I - GPU & Hardware
0®00000

Driving screens

VGA Encoder ——» VGA Conn
L
v
o Display Port Encoder — DP Conn
- A
DVI Encoder — DVI Conn

Driving screens : the big picture

Framebuffer: The image to be displayed on the screen(VRAM)
CRTC: Streams the framebuffer following the screen’s timings
Encoder: Convert the CRTC's output to the right PHY signal

Connector: The actual connector where the screen is plugged

75

~

I - GPU & Hardware
00®0000

Driving screens

= s 2%

Screen connectors

@ VGA: Video, introduced in 1987 by IBM

@ DVI: Video, introduced in 1999 by DDWG

e DP: Video & Audio, introduced in 2006 by VESA

@ HDMI: Video & Audio, introduced in 1999 by HDMI Founders

I - GPU & Hardware
000®000

Driving screens

CRTC Scanout

~ oo Line 0
e HBlank _ _ __ - ----""7
/ SN
| - = Line 1
! HBlank _ _ _ — - ----""7
1 IR 5
\ [
\
\
\ = LineY-2
\ HBlank _ _ _ - -----"7"7
\ I L 1
' — — LineY-1
\ g —
\ HBlank _ _ _ - ----"7
\ .
\ Line Y

o VBlank

Driving screens : the CRT Controller
@ Streams the framebuffer following the screen'’s timings

o After each line, the CRTC must wait for the CRT to go back
to the beginning of the next line (Horizontal Blank)

@ After each frame, the CRTC must wait for the CRT to go
back to the first line (Vertical Blank)

@ Timings are met by programming the CRTC clock using PLLs

I - GPU & Hardware
0000®00

Driving screens

VGA cable ("
EDID signal

EDID
EEPROM

]
w7 Screen

[CRTC ¢

1

Configuring the CRTC : Extended display identification data
@ Stored in each connector of the screen (small EEPROM)

@ Is usually accessed via a dedicated 12C line in the connector

@ Holds the modes supported by the screen connector

@ Processed by the host driver and exposed with the tool xrandr

(see xrandr --verbose)

10/75

I - GPU & Hardware
00000e0

Driving screens

Example: Some display standards
@ 1981 : Monochrome Display Adapter (MDA)

e text-only
e monochrome
e 720 * 350 px or 80*25 characters (50Hz)

@ 1981 : Color Graphics Adapter (CGA)

e text & graphics
e 4 bits (16 colours)
e 320 * 200 px (60 Hz)

@ 1987 : Video Graphics Array (VGA)

e text & graphics
e 4 bits (16 colours) or 8 bits (256 colours)
e 320*200px or 640*480px (<= 70 Hz)

11/75

I - GPU & Hardware
©000000e

Driving screens

Initial video mode

o Very low resolution (640*480px, 4 bits);
@ Provide a simple “accelerated” terminal;
@ Allow per-pixel access;

@ Accessible from real mode, 10h BIOS call.

VESA BIOS Extensions (VBE)

@ Bios call to change the mode;

@ High-resolution video mode (<= 1600*1200);
@ 16 or 24 bits colour resolution;

@ Page flipping, access from the protected mode;
@ etc...

12 /75

I - GPU & Hardware
®000000

Host < — > GPU communication

Outline
© ' - GPU & Hardware

@ Host < — > GPU communication

13 /75

I - GPU & Hardware
0®00000

Host < — > GPU communication

Modern host communication busses

@ 1993 : Peripheral Component Interconnect (PCl)

e 32 bit & 33.33 MHz

o Maximum transfer rate: 133 MB/s
1996 : Accelerated Graphics Port (AGP)

e 32 bit & 66.66 MHz

e Maximum transfer rate: 266 to 2133 MB/s (1x to 8x)
@ 2004 : PCI Express (PCle)

o 1lane: 0.25 — > 2 GB/s (PCle vl.x — > 4.0)
o up to 32 lanes (up to 64 GB/s)
o Improve device-to-device communication (no arbitration)

Several generic configuration address spaces (BAR)
Interruption RQuest (IRQ)

14 /75

I - GPU & Hardware
©0®0000

Host < — > GPU communication

Programming the GPU : Register access via MMIO

@ A GPU's configuration is mostly stored in registers;

@ A register is usually identified by an address in a BAR;

@ Device's BARs are all accessible in the physical address space;
@ They are thus mappable in the CPU’s virtual memory;

@ Registers are then accessed like a “uint32_t array”;

@ This is called Memory-Mapped Input/Output (MMIO).

0 Logical address X
1 1 1 1 1
0 |UnusedI ; ; ; Unused
11 1 1 1 1
(swap) [t / .
" oy 4 P oxif 0 ‘A Oxfff
S GPU 0, BAR 0
g : Register Space
Disk RAM PCI-01:00 BARO

Physical address
Example of a CPU process's virtual memory space

15/75

I - GPU & Hardware
0008000

Host < — > GPU communication

CPU & GPU Memory Requests Routing

Logical Physical
CPU address MMU address

Physical __
address Device

L [IOMMU N

(optional) l—
Device

Glossary:

MMU: Memory-Management Unit
IOMMU: Input/Output MMU

BIOS: Basic I/0O System

Location of functions:

[Jepru [Jcnipset [Jepu [|ram [JBios []Device

16 /75

I - GPU & Hardware
000000

Host < — > GPU communication

GPU-accessible memory areas

e Video RAM (VRAM) : Blazing fast

@ Host RAM via Direct Memory Access (DMA) : Fast
o Graphics Translation Table (GTT/GART);
@ Exposes a linear buffer from multiple RAM pages;

e VGA window (physical address range: 0xa0000-0xbffff).

17 /75

I - GPU & Hardware
0000000

Host < — > GPU communication

GTT/GART

Providing the GPU with easy access to the Host RAM

Process virtual address space (VM)

10 |

/

|
i

7 - ~\Physical address
NN W TT [E]GART | |
1 @m| [T ‘\ 1 ~ T 1
GPU virtual address (VRAM + GART) ‘1‘4;

Location of the address/memory:

\:I CPU \:’GPU CI RAM \:IGTI’/GART(references RAM) \:I Device

GTT/GART as a CPU-GPU shared-buffer for communication

@ GPU feature to gather some RAM pages in the physical space;
@ Can be seen as a host-managed MMU on the GPU,;

@ The host maps a RAM buffer into GART and then maps this
new address into a GPU virtual address space. Shared Mem!

18 /75

I - GPU & Hardware
feJeTeleTetel)

Host < — > GPU communication

GTT/GART usage

@ Upload textures or scientific data;

@ Store the pushbuffer (GPU command submission).

Event reporting : Interruption RQuest(IRQ)

@ GPUs often report events such as screen (un)plugged,
processing error, etc... They should be processed ASAP;

@ A device can send an IRQ to wake/interrupt the CPU;
@ The CPU jumps to some code to handle the IRQ;

@ Once the event is acknowledged, the CPU can continue what
it was doing before the event occurred.

19/75

Il - Host: summary
©000

General overview

Outline

© ! - Host: summary
@ General overview

20/75

Il - Host: summary
0e00

General overview

The GPU needs the host for:

@ Setting the screen mode/resolution (mode setting);
@ Configuring the engines and communication busses;

@ Handling power management;
e Thermal management (fan, react to overheating/power);
o Change the GPU's frequencies/voltage to save power;
@ Processing data:
o Allocate processing contexts (GPU VM + context ID);
e Upload textures or scientific data;
e Send commands to be executed in a context.

21/75

Il - Host: summary
ooeo

General overview

Overview of the components of a graphics stack

A GPU with its screen;

One or several input devices (mouse, keyboard);

o
o
@ A windowing system (such as the X-Server and Wayland);
@ Accelerated-rendering protocols (such as OpenGL);

o

Graphical applications (such as Firefox or a 3D game).

Components of the Linux Graphics stack

@ Direct Rendering Manager (DRM) : exports GPU primitives;
e X-Server/Wayland : provide a windowing system;

@ Mesa : provides advanced acceleration APlIs;

Il - Host: summary
oooe

General overview

User space

Applications

Qt gtk nexuiz

Xorg

xlib

network

x-server

ddx

mesa

libdrm

Kernel space

drm Rasterizer

If UCs*

nouveau radeon intel

GPU CPU

23 /75

Overview

Outline

© DRM

@ Overview

24 /75

DRM

Overview

Direct Rendering Manager

@ Inits and configures the GPU;

@ Performs Kernel Mode Setting (KMS);
@ Exports privileged GPU primitives:
o Create context + VM allocation;
Command submission;
VRAM memory management: GEM & TTM;
Buffer-sharing: GEM & DMA-Buf;

@ Implementation is driver-dependent.

Wraps the DRM interface into a usable API;

Factors-out some code;

Is meant to be only used by Mesa & the DDX;

25 /75

Kernel Mode Setting

Outline

© DRrM

@ Kernel Mode Setting

26 /75

DRM

Kernel Mode Setting

Kernel Mode Setting (KMS)
@ Opposed to User Mode Setting (UMS);

@ The kernel manages modesetting;
@ Enables:

e root-less graphic server;

o glitch-free boot;

e fast VT-Switching;

e better power management;

o kernel crash logs.

27 /75

DRM
©00000

Graphics buffer management

Outline

© DRM

@ Graphics buffer management

28 /75

DRM
[] YeleTole}

Graphics buffer management

Overview

@ Graphics memory allocator;
@ Manages VRAM and GART;

Buffer management: Constraints

@ Contrarily to a CPU MMU, a page fault is “fatal”;
@ We don't know when the GPU will actually need the buffers;

@ This means all pages should be available and addresses
shouldn't change during processing;

@ What actually defines the processing time frame?

29 /75

DRM
00®000

Graphics buffer management

Detecting when a buffer is needed

o Buffers shoud be managed by the driver;

@ A user should reference which buffers are needed in what
command batch;

@ When the kernel emits a command batch, it should pin the
buffers that are used by this command batch.

When should we unpin a buffer?: Fencing

@ Detecting the end of the execution of a command batch is
done by fencing;

@ Fencing can be implemented by adding an instruction at the
end of the command batch to increment a counter (fence);

@ When the counter’s value is higher or equal to the fence, we
know the batch has been executed correctly.

@ Alternatively, an IRQ could be sent instead of incrementing a
counter.

DRM
[seYe] Tole}

Graphics buffer management

Auto-deallocation

o Buffers are reference-counted to allow buffer deallocation;

@ When a command batch references a buffer, the buffer's
reference counter is incremented:

@ When a command batch has been processed, the reference
counter is decremented;

@ When the reference counter drops to 0, free the BO.

31/75

DRM
0000®0

Graphics buffer management

Translation Table Maps (TTM)

@ Open-sourced by Tungsten Graphics (now VMware);

@ Does what was described before (fencing, validation (forcing
pinning));
@ Used by Radeon and Nouveau.

Graphics Execution Manager (GEM)

@ The standard interface for creating, sharing, mapping and
modifying buffers;

@ Intel only implements GEM, radeon and nouveau use a
GEMified-TTM;

o Allow buffer sharing: flink() to share (returns an ID), open()
to open a shared buf;

@ Doesn't specify fences/validation mechanisms.

32/75

DRM
00000®

Graphics buffer management

DMA-Buf

o GEM flink is unsecure (once flinked, a buffer can be accessed
with few controls’);

@ GEM flink doesn't work across drivers;

o DMA-Buf solves the latter and uses file descriptors to identify
shared buffers;

@ This fd can then be passed on to another process using unix
sockets;

@ The requesting process is responsible for transmitting the
buffer.

More information on security
@ https://lwn.net/Articles/517375/

33/75

https://lwn.net/Articles/517375/

How to contribute code

Outline

© DRM

@ How to contribute code

34 /75

How to contribute code

How to contribute code

Get in touch with the X.org/DRM community;
Get to know how they work;

Pick something of interest to you and study it;
Can you improve current support? If not, goto 3
Write and propose a patch

Accepted? If not, listen their feedback and goto 5
Well done! Goto 3

© ©6 ©6 ©6 © © o
U N CI - C N

35/75

Mesa

Outline

e Mesa

@ Mesa

36 /75

Mesa
oeo

Mesa

@ Provides advanced acceleration APlIs:

o 3D acceleration: OpenGL / Direct3D
e Video acceleration: XVMC, VAAPI, VDPAU

@ Mostly device-dependent (requires many drivers);

Mesa

@ Divided between mesa classics and gallium 3D;

Mesa classics

@ Old code-base, mostly used by drivers for old cards;

@ No code sharing between drivers, provide only OpenGL;

Gallium 3D

@ Built for code-sharing between drivers (State Trackers);

@ Pipe drivers follow the instructions from the Gallium interface;

@ Pipe drivers are the device-dependent part of Gallium3D;

37/75

Mesa
ooe

Mesa

Applications

‘Weston X-server mplayer xonotic Qt
| 1
T 1
Mesa \ x
libgl
T ‘
‘SlaleTracke(s / L \ Me<a7§l{s‘;ics \
\
egl xorg, VDPAU OpenGL intel radeon nouveau_vieux swrast
1 i
Gallium
/ / / pm’/{l " / \1 \1 \
softpipe llvmpipe nvs0 nve0 1300g 16008 nv30
i
\J \. X V K
GPU
LR (through libdrm)
CPU

38

75

OpenGL

Outline

e Mesa

@ OpenGL

39/75

Mesa
0®00

OpenGL

Overview: Summary of OpenGL's history

@ OpenGL is edited and managed by the Khronos Group;

@ First version accelerated transforming 3D coordinates to 2D;
@ Later version added Transform, Clipping and lightning (TCL);
@ These instructions were too fixed and limited creativity;
°

This pipeline got replaced by a programmable one: Shaders!

v

Shaders are roughly separated in 2 stages:

@ Vertex Shaders: To implement coordinate transforming;

@ Fragment Shaders: To implement post-processing effects.

40/75

OpenGL

Existing Fixed Function Pipeline

41 /75

OpenGL

ES2.0 Programmable Pipeline

42 /75

Video Acceleration

Outline

e Mesa

@ Video Acceleration

43 /75

Mesa
0e00

Video Acceleration

Video Acceleration : Overview

The video pipeline is composed of the following stages:
@ Decoding the video
@ Convert the colourspace from YUV to RGB;
@ Scale each frame to the wanted size:

@ Composite the subtitles and the OSDs.

44 /75

Mesa
coeo

Video Acceleration

=

Decoding a VP8 video stream

Complex operations that can be implemented in hardware.

45 /75

Mesa
oooe

Video Acceleration

XVideo Motion Compensation (XVMC)

@ Entire video-decoding offloading of:
e MPEG and MPEG2 formats (DVD).
@ Limits:
e non-accelerated OSD/subtitles compositing.

Video Decode and Presentation APl (VDPAU)

o Entire video-decoding offloading for most common formats;

@ The presentation allows compositing the subtitles/OSD;
@ OpenGL/CL-compat: use the output in GL/CL;
o Limits:
o The hardware must support every format (not really a problem
on firmware-based hw like NVidia).

46 /75

X11 and the XServer
(1]

Overview

Outline

© X11 and the XServer
@ Overview

47 /75

X11 and the XServer
oce

Overview

User space

Applications

Qt gtk nexuiz

Xorg

xlib

network

x-server

ddx

mesa

libdrm

Kernel space

drm Rasterizer

If UCs*

nouveau radeon intel

GPU CPU

48 /75

X11 and the XServer
®00

X11

Outline

© X11 and the XServer

o X11

49 /75

X11 and the XServer
oeo

~T Texteditor - pat seport -
Elle_Edit_format_ Options

et ey T TopRigh
| sottom Left [~ Emoty |

X11 : The X protocol version 11

@ Rendering protocol over a socket;

@ Provides a very simple rendering API;

@ Was meant for mainframe environment (programs run on the
mainframe and rendering on thin clients);

Applications used to be rendered on a CPU;
Is over 25 years old but supports extensions;
Motif is a X11-based toolkit (see above).

50 /75

X11 and the XServer
ooe

XLib: Drawing applications with X11

The X-Server is oftenly accessed through the XLib;

It provides an interface to generate X11 commands;
The XLib shouldn’t be used anymore, use XCB!

XCB: The X protocol C-language Binding

New attempt to create a wrapper for X11;
Designed to be lightweight, asynchronous;
Provide a clean thread-safe interface;

Allow direct access to the protocol as needed;

Designed for toolkits and X-specific applications;

51/75

X11 and the XServer
©000000000000

X-Server

Outline

© X11 and the XServer

o X_Server 52/75

X11 and the XServer
0®00000000000

X-Server

Objectives

@ Receive drawing commands from X Clients;

@ Render them as efficiently as possible (acceleration!);
@ Handle input events and client attributes;

@ Work with the window manager.

Basic Acceleration

Implemented by the DDX:
@ 2D acceleration (XAA, EXA, etc...);

@ Simple video acceleration (video overlay XV).

53 /75

X11 and the XServer
00®0000000000

Client

Xlib or xcb il

\‘ DDX
DIX

@ Dispatch Input Drivers | | Video Drivers @

=Y

eration ArchitetQxe

Acceleration_Video Acceleration_2D

Hardware de\u(es

’dd

The X-Server's internals

54 /75

X11 and the XServer
000@000000000

X-Server

2D Acceleration

@ XAA: Mostly accelerates lines and solid fills;
@ EXA: Meant to accelerate XRender;

@ SNA: Intel's Sandy bridge New Acceleration;
°

°

Glamor: Basing acceleration over OpenGL;

Towards a Gallium3D-based common acceleration;

55 /75

X11 and the XServer
0000®00000000

X-Server

Video Acceleration: XVideo extension (XV)
o Offloads:

o video scaling (with cubic filtering): Up scaling;
e colour conversion: Converting YUV to RGB;
o display.

@ Limits:

o Doesn't offloads video decoding and OSD compositing.

56 /75

X11 and the XServer
00000e0000000

X-Server

The X Resize, Rotate and Reflect Extension (XRandR)

@ Common X API to configure screens and multi head;

@ Implemented by the open and proprietary drivers;

v
Composite extension

@ Keep a copy of each window in memory;

@ Re-calculate the framebuffer when a window moves;

@ Moving a window doesn't force the redraw of the windows
under it;

@ Also allow window-closing animation.

57 /75

X11 and the XServer
000000e000000

X-Server

OpenGL X Extension (GLX)

@ Allow the use of OpenGL on X;
@ 2 modes:

o Direct: The prefered rendering method (local rendering);
o Indirect: The application asks the X-Server to be a GL proxy.

GLX direct rendering
The behaviour of this mode depends on the DRI protocol version:
@ DRI1: X tells the app the size of its window and where to
draw in the framebuffer;
@ DRI2: The app renders to a buffer and passes it to the
window manager via GEM;
@ DRI-next: like DRI2 but uses DMA-Buf instead of GEM flink.

On DRI1, moving the window of a direct-rendered application
resulted in strange behaviours.

58 /75

X11 and the XServer
0000000e00000

X-Server

Direct rendering with DRI1

@ An application willing to use direct rendering (OpenGL, video
dec, other);

@ Asks the XServer for its position on the framebuffer and
clipping rectangles (SAREA);

@ Asks the XServer to put a lock on this SAREA;

@ Render the frame.

Limits to direct rendering with DRI1

@ Rendering not synchronized with applications (tearing!);

@ Requires synchronisation between clients & the server;

@ Doesn't integrate well with compositing environments;

@ Saving video memory is not needed anymore.

59 /75

X11 and the XServer
0000000080000

efox

- .

(6] Add content item | FOSSwire

2009-05-25
14:47:40

Termin
.0

5
5
5
5.
5z
5
5
5

Some of the DRI1 problems

60 /75

X11 and the XServer
0000000008000

X-Server

Direct rendering with DRI2

@ An application willing to use direct rendering (OpenGL, video
decoding) renders to a buffer and GEM flink it to send it to
the XServer/compositor;

@ The compositor keeps this buffer until it needs to render a
new frame;

@ — works on compositing environments, synchronized
rendering, no locks :).

Limits to direct rendering with DRI2

@ GEM Flink is unsafe (a flinked buffer is accessible with few
controls);

@ Increases the number of context switches, slower performance;

@ Takes more memory than DRI1 (who cares?).

61/75

X11 and the XServer
0000000000800

X-Server

Direct rendering with DRI-next
@ Same as DRI2 but use DMA-Buf instead of GEM_flink;

Limits to direct rendering with DRI-next

@ Same as DRI2 but no security problem.

X11 and the XServer
0000000000080

X-Server

GLX Indirect rendering

@ The application asks the X-Server to be a GL proxy;

@ Supports up to OpenGL 1.4 on opensource drivers;
@ At first, it meant no acceleration (swrast);

e With AIGLX (Accelerated Indirect GLX), commands are
redirected to the right mesa driver.

63 /75

X11 and the XServer
000000000000

X-Server

X Client X Client
B

(e

X Client

X server 'ﬁé Compositor
\
@\ \@
KMS evdev
Kernel

Reaction to an input event

@ 1: The kernel driver evdev sends an event to the X-Server;
@ 2: The X-Server forwards it to the window with the focus;
@ 3: The client updates its window and tell the X-Server;

@ 4 & 5: The X-Server let the compositor update its view;

@ 6: The X-Server updates sends the new buffer to the GPU.

64 /75

Wayland
©000

Overview

Outline

65 /75

Wayland
0®00

Overview

Overview

@ Protocol started in 2008 by Kristian Hggsberg;

@ Aims to address some of X11 shortcomings;
@ Wayland manages:

o Input events: Send input events to the right application;
o Copy/Paste & Drag'n'Drop;
o Window buffer sharing (the image representing the window);

Wayland Compositor

@ Implements the server side of the Wayland protocol;

@ Talks to Wayland clients and to the driver for compositing;

@ The reference implementation is called Weston.

66 /75

Wayland
coeo

Overview

Current implementation of buffer-sharing

@ Wayland applications share buffers using GEM _flink;
@ They then send the share_ID to wayland which opens it;

67 /75

Wayland
ocooe

Overview

Wayland Client

Wayland
Compositor
.
® \@
N
KMS evdev
Kernel

Reaction to an input event

@ 1: The kernel driver evdev sends an input event to “Weston";
@ 2: “Weston" forwards the event to the right Wayland client;
@ 3: The client updates its window and send it to “Weston";

@ 4: Weston updates its view and send it to the GPU.

68 /75

Wayland
®00

X11 vs Wayland

Outline

69 /75

Wayland
oceo

X11 vs Wayland

X11 vs Wayland

@ Rendering protocol vs compositing API:

e X11 provides old primitives to get 2D acceleration (such as
plain circle, rectangle, ...);

e Wayland lets applications render their buffers the way they
want;

@ Complex & heavy-weight vs minimal & efficient:

e X11 is full of old and useless functions that are hard to
implement;

e Wayland is minimal and only cares about efficient buffer
sharing;

@ Cannot realistically be made secure vs secureable protocol.

70/75

Wayland
ocoe

X11 vs Wayland

X11 : Security

@ X doesn't care about security and cannot be fixed:
e Confidentiality: X applications can spy other applications;
o Integrity: X applications can modify other apps’ buffers;
e Auvailability: X applications can grab input and be fullscreen.

@ An X app can get hold of your credentials or bank accounts!

@ An X app can make you believe you are using SSL in Firefox!

Wayland : Security

e Wayland is secure if using a secure buffer-sharing mechanism;
@ See https://lwn.net/Articles/517375/.

71/75

Attributio
©000

Attributions

Outline

72 /75

Attributio
0®00

Attributions

Thanks to the fellows on #Nouveau for answering my
questions

The following X.org devs helped me getting this presentation into
shape:
@ lynxeye
mwk
mlankhorst
ahuillet
ymanton
airlied
RSpliet

73/75

Attributio
coeo

Attributions

Attributions : Hardware

@ Moxfyre: https://en.wikipedia.org/wiki/File:
Motherboard_diagram.svg

o Boffy b: https://en.wikipedia.org/wiki/File:
IBM_PC_5150. jpg

o Katsuki: https://fr.wikipedia.org/wiki/Fichier:
VGA_plug. jpg

@ Evan-Amos: https://fr.wikipedia.org/wiki/Fichier:
Dvi-cable. jpg

@ Evan-Amos: https://en.wikipedia.org/wiki/File:
HDMI-Connector. jpg

@ Andreas -horn- Hornig: https:
//en.wikipedia.org/wiki/File:Refresh_scan. jpg

@ Own work: https://en.wikipedia.org/wiki/File:
Virtual_memory.svg

74 /75

https://en.wikipedia.org/wiki/File:Motherboard_diagram.svg
https://en.wikipedia.org/wiki/File:Motherboard_diagram.svg
https://en.wikipedia.org/wiki/File:IBM_PC_5150.jpg
https://en.wikipedia.org/wiki/File:IBM_PC_5150.jpg
https://fr.wikipedia.org/wiki/Fichier:VGA_plug.jpg
https://fr.wikipedia.org/wiki/Fichier:VGA_plug.jpg
https://fr.wikipedia.org/wiki/Fichier:Dvi-cable.jpg
https://fr.wikipedia.org/wiki/Fichier:Dvi-cable.jpg
https://en.wikipedia.org/wiki/File:HDMI-Connector.jpg
https://en.wikipedia.org/wiki/File:HDMI-Connector.jpg
https://en.wikipedia.org/wiki/File:Refresh_scan.jpg
https://en.wikipedia.org/wiki/File:Refresh_scan.jpg
https://en.wikipedia.org/wiki/File:Virtual_memory.svg
https://en.wikipedia.org/wiki/File:Virtual_memory.svg

Attributio
oooe

Attributions

Attributions : Host : The Linux graphics stack

o X.org community: X.org schematic
o Kristian Hggsberg: http://wayland.freedesktop.org/

@ Emeric Grange:
http://emericdev.wordpress.com/2011/08/26/
a-comprehensive-guide-to-parallel-video-decoding/

e http://blog.mecheye.net/2012/06/the-linux-graphics-stack/

@ http://fosswire.com/post/2009,/05/xorg-dri2-uxa/

75 /75

http://wayland.freedesktop.org/
http://emericdev.wordpress.com/2011/08/26/a-comprehensive-guide-to-parallel-video-decoding/
http://emericdev.wordpress.com/2011/08/26/a-comprehensive-guide-to-parallel-video-decoding/

	I - GPU & Hardware
	General overview
	Driving screens
	Host <-> GPU communication

	II - Host: summary
	General overview

	DRM
	Overview
	Kernel Mode Setting
	Graphics buffer management
	How to contribute code

	Mesa
	Mesa
	OpenGL
	Video Acceleration

	X11 and the XServer
	Overview
	X11
	X-Server

	Wayland
	Overview
	X11 vs Wayland

	Attributions
	Attributions

