
A run-time generic decision framework for power
and performance management on mobile devices

Martin Peres
LaBRI, University of Bordeaux

Talence, France
Email: martin.peres@labri.fr

Mohamed Aymen Chalouf
IRISA, University of Rennes 1

Lannion, France
Email: mohamed-aymen.chalouf@irisa.fr

Francine Krief
LaBRI, University of Bordeaux

Talence, France
Email: francine.krief@labri.fr

Abstract—Nowadays, mobile user terminals are usually com-
posed of multiple network interfaces and multiple processors.
This means there are usually several independent ways of
satisfying the immediate Quality of Service (QoS) expected by
the user. Dynamic decision engines are used for selecting the
most power-efficient interface and performance states in order to
satisfy the QoS while increasing the battery life. Current decision-
engines are not generic and need to be mostly re-written when
a new processor or radio comes out. This is because there are
no generic decision-making framework for real-time power and
performance management that would allow creating re-usable
bricks that could be shared by multiple decision engines. In this
paper, we propose such a framework to ease the implementation
of a run-time decision making with real-time requirements and
a low memory/CPU footprint to increase the reliability of mobile
devices.

I. INTRODUCTION

Mobile end-user devices such as smartphones and tablets
usually have multiple ways of accessing the Internet, may
it be WiFi (b/g/n), EDGE, 3G, 4G or Bluetooth. All these
ways of accessing the Internet are usually provided by two
separate radios. The WiFi adapter supporting the WiFi modes
b/g/n and Bluetooth while the EDGE, 3G and 4G is provided
by another adapter. Depending on the current usage of the
device, every way can become the most efficient one but, given
the very dynamic nature of the user’s usage of the device,
it is impossible for a static configuration to always achieve
the lowest power consumption while still meeting the user’s
expected Quality of Service (QoS).

Likewise, ARM’s big.LITTLE [1] architecture provides a
set of cores where half of them are optimised for power
consumption while the other half of them are optimised for
performance. Every core can be powered down (power-gated)
or have its clock modulated to lower the power consumption
or increase performance (DVFS [2]).

While migrating applications from one CPU to another can
be done locally at a relatively low performance- and power-
cost, it is not the case in networks. Before MultiPath TCP
(MPTCP) [3], it was not possible to seamlessly support data
connection handovers without a proxy. This means that switch-
ing network interfaces would close all the TCP connections.
MPTCP is very promising for multihomed devices as it allows
seamless handovers of TCP connections if both the client and
the server support it. This will enable selecting the most power-
efficient network interface for the current usage of the user
without needing a proxy. The MPTCP protocol is however not

final yet, but it is implemented nonetheless by Apple for Siri
in iOS 7 [4] or in an experimental tree of Linux.

Power and performance decisions are not easy to make
because of the network handover and processor migration
costs. It may indeed be more power-efficient to stick to a less
instantly-efficient mode that would avoid a ping-pong effect
which would be both damaging to the user experience and to
the battery life. Numerous articles are found in the literature
about autonomic network selection. However, they all use an
application- and hardware-specific decision making module
that needs to be re-implemented when a new radio is being
used because accurate models are heavily hardware-, driver-
and protocol-dependent.

In this article, we propose a generic decision flowgraph for
power and performance management. This flowgraph allows
run-time decision making, even with real-time requirements
and is highly reusable thanks to its modular nature. We also im-
plemented a framework around this generic decision flowgraph
to minimise the amount of work needed to implement a new
power- and performance-management decision-engine. This is
done by separating the decision process in different blocks that
can be re-used later. This eases experimentation during the
design phase and the well-defined interface allows dumping
debugging textual and graphical debugging information which
are used throughout the article to showcase our framework.
Finally, by using the proposed framework, applications also
separate the decision engine from the application which im-
proves its re-usability.

Section II covers the state of the art related to power
and performance management. The definition of the proposed
decision flowgraph is presented in section III and its implemen-
tation is detailed in section IV. An evaluation of the framework
is given in section V. Section VI concludes and presents the
future work.

II. STATE OF THE ART

Decision engines are usually used in the literature for
network interface selection in multihomed mobile devices,
consolidating workloads in data centres [5] or making dynamic
power/performance trade-offs in CPUs/GPUs through dynamic
voltage-frequency switching [2].

Most articles on network selection in a multihomed envi-
ronment usually aim at selecting the interface that will best
suit the QoS. Some decision models are based on user-defined
rules [6] or policy-based priority queues [7]. Other articles on



the same topic incorporate more metrics in the decision process
such as the available bandwidth or the radio signal strength [8]
while some also include power considerations [9][10]. A
generic mathematical model is also proposed [11] and one
is based on genetic algorithms [12] instead of the usual rule-
based or linear optimisation selection algorithms.

However, we are not aware about any previous work
taking into account the real-time and low performance-impact
requirements for performance and power management. The
real-time requirement is important because decisions must
be taken at a fast and constant rate to react to changes in
the user’s activity and its surrounding. The low performance
impact requirement matters because the resources taken by the
decision engine cannot be used to produce useful work for the
end user and increase the power consumption, which decreases
the potential power savings made by the decision engine.

Decision engines found in the literature are usually written
in high-level languages such as Matlab or linear-optimisation
frameworks that are hard to bound in execution time and
RAM usage. These languages usually have a high performance
impact on the CPU and RAM usage compared to non-managed
languages such as C. Genetic algorithms have also been used
and have, by nature, no execution time boundaries since they
should never converge. The best solution can however be
selected at any generation which makes it suitable for real-
time requirements in a slow decision rate scenario but may
not be acceptable for its CPU and memory impact.

PISA [13] proposed to separate the application-specific part
of an optimisation engine from the non-application-specific
part and defined interfaces for them to communicate. This
modularisation allows re-using the optimisation algorithms
and share them with other researchers. PISA is language-
independent which makes it potentially suitable for real-time
applications, depending on the algorithms used. It is however
not a framework and thus lacks debugging helpers.

In this article, we propose a flowgraph for generic and
run-time decision making that follows the modularisation ap-
proach proposed by PISA for multi-variable optimisation. This
flowgraph has been implemented in a framework written in C
which gets the best potential for performance and efficience.
This framework focuses on allowing real-time decisions for
power and performance management while remaining generic-
enough to not constraint the decision-engine programmer. It
also eases the development of a decision engine thanks to
having different modules to chose from for the different stages
and thanks to its advanced debug outputs.

III. DEFINITION OF AN ABSTRACT DECISION FLOWGRAPH

In this section, we propose the definition of an abstract
and generic decision flowgraph that is compatible with real-
time requirements.

A decision flowgraph is needed when there are more than
one independent way to achieve the same goal, yet, they do
not impact the power consumption and performance in the
same way. For instance, in the case of a multihomed mobile
device, we could want to take a decision whether to use the
WiFi network interface or the cellular one. Taking a decision
requires a performance and power model (HW model) of

both interfaces. With these models, it should be possible to
determine the optimal configuration to balance the needed
performance with power consumption at any given time.

The hardware (HW) models are supplied with the user’s
performance/QoS needs continuously so as it can self-optimise.
Instead of feeding the immediate QoS constraints to the
models, we propose feeding a prediction of what will be the
evolution of the constraints and their expected variance.

Once a HW model outputs a decision along with its
impact on performance and power consumption, they should
be compared with each others. In order to do so in an abstract
way, we propose that a score on every output metric of every
HW model should be generated and then aggregated into one
score per HW model. All these information are gathered in the
same data structure and sent to the decision-making part that
will decide which HW model should be selected.

Our abstract decision flowgraph is composed of 5 stages:

• Metrics: Collecting metrics / performance needs;

• Prediction: Predicting the evolution of the metrics;

• HW models: Proposing the best decisions possible;

• Scoring: Scoring the output of the local decisions;

• Decision: Selecting the best HW model;

This decision engine flowgraph is considered generic be-
cause it does not force using a single model with different
parameters, unlike other decision engines in the literature.
This decision making model improves interchangeability and
real-time-worthiness of a decision engine An overview of the
abstract decision flowgraph is presented in Figure 1. Each stage
will be further discussed in the following subsections.

Decision Flowgraph

Metrics Prediction HW Models

Scoring

Scoring_Model_1

Scoring_Model_2

Decision
M1 Predicted_M1

M2 Predicted_M2

Model1

Model2

Scored_M1

Scored_M2

Scored_M1

Scored_M2

Score

W(0)

W(1)

Decision

ScoreW(0)
W(1)

Figure 1. Overview of the abstract decision flowgraph

A. Decision flowgraph

A flowgraph represents a decision process. It includes
the 5 stages discussed before and holds properties like the
decision refresh rate. It can also run along-side other decision
flowgraphs to, for example, allow an application to select
the most efficient network interface while selecting the right
performance level on the CPU.



B. Metrics

The role of the input metrics is to describe the current
state of the system, including the performance requirements.
They are not limited in numbers and should be updated
periodically at a fast-enough rate to represent the current
state and its variability. Poorly-chosen metrics will produce
poor predictions at the next stage which will result in a poor
decision quality. Examples of metrics could be the incoming
and outgoing packets in the network stack or the CPU usage.

C. Prediction

The objective of the prediction stage is to supply the
expected evolution of the system’s state for a given time span.
The needed time span depends on how often a decision is taken
and how long it takes for a decision to be applied.

Prediction models may have multiple inputs of different
types and generate multiple predictions of different types. For
instance, a prediction model could take as an input the network
packets received and predict the evolution of the reception
throughput of the network interface.

Predictions act as constraints and can be metrics-based
(run-time information on the state of the system) or static
constraints. Static constraints can be used to express power
or performance constraints such as latency that the HW model
should take into account during its decision making.

The output of prediction models is composed of three
graphs per prediction. The first graph represents the expected
evolution of the predicted metric while the other two respec-
tively represent the lowest and highest expected outputs for
the metrics. These three graphs allow representing both the
average and the expected variance at any point of the time
span of the prediction.

Using graphs over mathematical formulas allows for a
much more precise and real-time-friendly intermediate rep-
resentation for predicted metrics. First of all, interpreting
mathematical formulas at run time can be very CPU-intensive
and linear optimisation has execution time that is hard to
bound. Moreover, graphs are much easier to generate, read
and score for a computer. They also represent the real expected
evolution and, to some degree, the density of probability at any
point of the prediction.

Some prediction models are proposed in the next section.

D. HW Models

HW models of a flowgraph should all describe an in-
dependent way to carry out the task that is needed by the
user. They are user-provided, take the predicted metrics as an
input and output the expected impact on the predicted met-
rics/constraints. Every output metrics of the models should be
in the predicted metrics/constraints otherwise it is impossible
to score it.

HW models have to be independent so that selecting one
does not change how others calculate as this would require
HW models to be aware of each others and this would break
the modularity of the flowgraph.

In the case of network interface selection, there should be
one HW model per network interface. All HW models would

take the predicted network throughput along with the RF occu-
pancy and latency constraints. HW models should then try to
produce an optimal solution by selecting the right performance
mode at the right time to have the lowest power consumption
possible while still meeting the throughput requirement along
with the latency and RF occupancy constraints. The HW
models would then output graphs telling the evolution of
the expected power consumption, RF occupancy and network
latency in order to be scored.

The reason why there should be one HW model per inter-
face and not per technology is because one network interface
may support different technologies, such as the WiFi adapter
also supporting Bluetooth, and they would not be independent.

E. Scoring

The scoring stage is meant to score the different HW
models, before sending the result to the decision engine. The
HW model’s score is bound in [0, 1] and is calculated based on
the score of sub-metrics. Every sub-metric is assigned a weight
that defines the importance of each metric (W (0) and W (1) in
Figure 1). These weights need to be defined by the application.
Scoring blocks can be user- or framework-provided.

F. Decision

The final stage of the decision process is selecting the
most appropriate HW model and switching to it. The decision
stage receives the scores of every HW model and metric, the
HW models’ output and the predictions. It is then responsible
for evaluating the transition costs on performance and power
consumption so as to avoid ping-pong effects that would be
damaging to both the battery life and the QoS.

IV. IMPLEMENTING THE DECISION FLOWGRAPH IN A
FRAMEWORK

In section III, we proposed a flowgraph for a generic run-
time decision engine. We have implemented this flowgraph
into a framework in order to test it and make writing decision
engines easier. We named this framework “Real-Time Generic
Decision Engine” (RTGDE). Its implementation is available at
https://github.com/mupuf/RTGDE.

This framework should not impede the implementation of
a real-time decision process due to the framework’s pipeline
nature and the fact it barely does any processing at all except
passing information from stage to stage. It should thus be
possible to create a soft real-time decision engine as long as
the predictions, HW models, scoring and decision algorithms
used can have their execution time bound.

In this section, we detail the most important design con-
straints we had at the different stages of the decision pipeline.

A. Metrics

Run-time metrics collection and decision suggests multiple
threads must be used to separate both processes. A cross-
threads synchronisation is thus needed to allow the producer
(metric collection) thread to send information (metrics values)
to the consumer (prediction) thread. The use of a ring buffer,
along with the usage of a mutex per metric, solves this
communication problem. It is shown on Figure 2.



Get

Put

Get

Put

Prediction

Thread 1

Thread 2

Decision
Thread

Metric 1

Metric 2

Figure 2. Using ring buffers to implement asynchronous communication
between metrics collection and metrics prediction

B. Predictions

Predictions take attached metrics and output three graphs
which are respectively the average, lowest and highest predic-
tion over time. Graphs are used instead of formulas to ease
development and make it easier to reach real-time guarantees.

The RTGDE framework aims at shipping multiple generic
prediction engines. At the time of this paper, we have imple-
mented the following ones:

• Simple: Equivalent to no prediction at all, it just
outputs the latest value of the metrics;

• Average: Computes the average and the variance of
the metric, outputs the average and the lowest/highest
prediction based on a confidence level and the variance
if the metrics follows a Gaussian.

• FSM: Considers the metric follows a Finite State
Machine (FSM) with associated properties such as
power consumption or throughput. The FSM predic-
tion learns the density of probability to transit from
one state of the FSM to an other and uses this
knowledge to output the expected evolution of the
metric. This prediction technique should work for
periodic signals but requires a very high sample rate at
the metrics. This prediction is not fully implemented
yet.

Since every application has different needs, it may not
be accurate to use generic prediction models. It was thus
important to allow for user- along with framework-supplied
prediction models. We decided to make it as easy as possible
to do so. This means the internal interface should be exposed
to the application in order to interface with it.

Constraints are considered as static predictions and define
how to score the HW model’s output metrics that are linked
to it. For instance, the power consumption constraint of a
model can be set so as the maximum score is achieved when
the power consumption is 0 mW, the minimum score when
drawing 3 W and the average score when consuming 1 W.
Score is attributed linearly between these points.

Applications may require the prediction to be dumped
along with the metrics data that was used to generate it.
Predictions are then dumped as a Comma-Separated Values
(CSV) file and a user-defined callback is called to allow the
application to process this data. Figure 3 was generated using
gnuplot, called from the user-defined callback of the pcap
example located at ’/tests/pcap/’ in [14].

Figure 3. Example of the output of the “average” prediction method

In this Figure, each point of “Packets” represents a received
packet (size and time of arrival). The packetSize prediction
low/average/high represent the output of the prediction stage
concerning the packet size. In this example, it is not expected
to change during the prediction period so the lines are flat.

C. Flowgraph

Prediction and HW models are attached to a flowgraph.
Whenever the flowgraph is run, all the predictions algorithms
generate the inputs for the HW models which are then called
serially with a copy of the input metrics. They could however
be run in parallel on multi-core processors to lower the
execution time of the flowgraph.

D. Scoring

There is currently only one scoring algorithm implemented
in the framework. The equation used to compute the HW
model’s score is given in Equ. 1 where Sm(i) is the calculated
score of the metric i while W (i) is the weight given to the
metric i and n is the number of metrics to be scored.

Score =

∑n
i=0 Sm(i) ∗W (i)∑n

i=0W (i)
(1)

The function Sm(i) is calculated by integrating the prob-
ability that the proposed result on the metric i is lower (or
higher, depending on the metric) than its prediction at time t
(pi(t)), over time 0 to the prediction time-span (T ).

Sm(i) =

∫ T

t=0
pi(t).dt

T
(2)

Like for predictions, an application may require the scoring
output to be dumped to a CSV file before calling a user-defined
callback. Figure 4 is an example of the output of the default
scoring method on the power consumption metric.

This figure is akin to Figure 3, except it is a power
consumption constraint instead of a packet size prediction.
We can also find an additional line (red) which represents the
expected power consumption of the “radio-gsm” HW model.
Finally, the decision impact, shown in light yellow, represents
the difference between the ideal power consumption (power
prediction low) and the expected power consumption.



Figure 4. Example of the output of the default scoring method

E. Decision

We provide as much information as possible to the decision
algorithm. This includes predictions and HW models outputs
along with their scores.

Once a decision is taken, a user-defined callback is called
with the result of the decision and all the information that
was used to take it. As this call is currently made from the
flowgraph thread, the application should not block.

V. EVALUATION

In this section, we evaluate the genericity of the flowgraph
and our framework by implementing two common use-cases
for decision engines in green networking. We then evaluate the
performance of the framework.

A. Network selection WiFi / GSM

As most of the decision engines in the literature are used
for selecting network interfaces based on QoS and/or power
efficiency, we decided to evaluate the framework by imple-
menting a simple WiFi / GSM network interface selection.

The throughput requirement and expected packet count are
predicted in real-time by sniffing the network traffic in the
network stack, using libpcap [15] (the library used by tcpdump
and Wireshark). In this experiment, the network activity was
generated by browsing the web. The following constraints are
set (Highest/Median/Lowest score):

• Power consumption: (0, 500, 3000 mW);

• RF spectrum occupancy: (0, 50, 100%);

• Latency: (0, 5, 10 µs).

For every decision, 2 predictions (Packet Size and Packet
count) and 3 constraints (Power consumption, Radio Fre-
quency (RF) occupancy and network latency) are generated.
Both HW models then generate 3 outputs each for every
decision. Given an update rate of 1 Hz, we get 11 CSV file
every second. It is thus impossible to include all of them in
this paper. Examples of outputs would be Figure 3 (output of
the prediction for the “packetSize” metric) or Figure 4 (output
of the scoring block for the “power consumption” constraint).

The WiFi and GSM radios are using the same HW model
but with different parameters. The parameters are the name

of the radio, its bitrate, the energy cost and delay to switch
from reception (RX) to transmission (TX) and TX to RX
and then, the power consumption when receiving and when
transmitting. Those parameters are very simple and are not
accurate as they do not take into account GSM and WiFi link
quality. They are however sufficient to prove the genericity
of the decision flowgraph and the framework as we are
only demonstrating how the framework can be used and not
evaluating the decisions taken by the engine.

The scoring technique is the one proposed earlier with
the metric “Power consumption” (Figure 5) given a weight
of 20, “Emission latency” (Figure 6) given a weight of 5
and “RF occupancy” (Figure 7) given a weight of 3. These
weights should be defined according to the user’s strategy and
motivations. It is out of the scope of this paper.

Figure 5. Evolution of the power consumption score of the two HW models

Figure 6. Evolution of the emission latency score of the two HW models

The decision to use the GSM model over the WiFi model
is given if the following conditions are fulfilled:

• The average score of the GSM model in the last 30
seconds is higher than the WiFi model’s score;

• The emission-latency average score of the GSM model
in the last 30 seconds is higher than 0.9. This means
the GSM’s throughput is sufficient for the current load;

• The latest network interface switch happened more
than 10 seconds ago.

As stated before, this will not yield a good decision but
it is sufficient to prove the flexibility of the approach. The
decision policy should be set according to the user’s strategy.



Figure 7. Evolution of the RF occupancy score of the two HW models

The final score of both HW models along with the decision
result is shown in Figure 8.

Figure 8. Evolution of the score of the two HW models along with the
decision

All these graphs have been generated at run-time using the
logging and callback capabilities of the framework.

In this evaluation, we proved it is possible to implement
a network interface selection at run-time using our proposed
generic flowgraph.

B. Selecting performance levels and processors

The second evaluation of the framework we performed was
CPU performance level and core selection on a smartphone
equipped with a big.LITTLE processor [1], where half the
cores are optimised for speed (BIG) and the other half is
optimised for power consumption (LITTLE). The decision
engine’s role is to select which set of core and performance
level should be used for the applications currently running on
the smartphone. It’s input metric is the CPU usage which gets
predicted using the “average” prediction system, as illustrated
by Figure 9.

Each set of core (BIG or LITTLE) has 3 different perfor-
mance levels. A performance level is defined by:

• Static power consumption: idle power consumption;

• Dynamic power consumption: power consumption
added when 100% active;

• Performance: Maximum performance relative to the
fastest performance level of the BIG core.

Figure 9. Evolution of the CPU usage metric and one prediction

The LITTLE cores have the following performance levels:

• 0: Static = 10 mW, Dyn. = 200 mW, Perf. = 0.1;

• 1: Static = 15 mW, Dyn. = 300 mW, Perf. = 0.2;

• 2: Static = 25 mW, Dyn. = 500 mW, Perf. = 0.3.

The BIG cores have the following performance levels:

• 0: Static = 100 mW, Dyn. = 800 mW, Perf. = 0.25;

• 1: Static = 125 mW, Dyn. = 900 mW, Perf. = 0.63;

• 2: Static = 150 mW, Dyn. = 1000 mW, Perf. = 1.0.

Figure 10. Evolution of the performance level used by the LITTLE model

We propose to use two HW models, one for the BIG set of
cores and one for the LITTLE set of cores. BIG and LITTLE
cores are handled using a single HW model with different
parameters (name and performance levels). Performance levels
are selected by both HW models while the set of core to be
used is selected by the decision process. In Figure 10, we can
see the selected performance levels for the LITTLE model
across the experiment with 0 being the slowest performance
level, 1 the median one and 2 the fastest one. Figures 11
and 12 respectively represent the evolution of the score for the
performance impact / CPU usage and the power consumption
score. The power consumption score comes from a static
constraint set to 5/125/1000 mW (low, median, high).

The power consumption constraint is given a scoring
weight of 10 while the performance impact score is given a
weight of 13. The weights need to be adjusted according to
the user’s strategy.



Figure 11. Evolution of the CPU usage score for the two HW models

Figure 12. Evolution of the power consumption score for the two HW models

The decision policy is entirely based on the score of the
two HW models. If the current model is LITTLE and if the
score of the BIG model is 20% higher than LITTLE’s score
then the BIG model is selected. On the other hand, if the
current model is BIG and the LITTLE’s score has been 10%
over the BIG’s 5 times without the LITTLE’s score dropping
lower than 20% of the BIG’s score, then the LITTLE model is
selected. A decision is taken twice per second which is slow
enough for performance- and power-cost of the migration to
be negligible. Figure 13 presents the evolution of the score of
the two HW models along with the proposed decision.

Figure 13. Evolution of the score of the two HW models along with the
decision

C. Performance evaluation

The previous experiment, without CSV outputs and graphs
generation, used approximately 296 kB of RAM on our system
(Arch Linux x86 64) with a further 796 kB of libraries shared
with other programs (libc, libglib, ld, libm, libpthread, libpcre,
libXau). The actual memory footprint of RTGDE library is
however just 36 kB and the volume of data created by the
framework for this experiment is lower than 56 kB. Most of
the remaining memory footprint of this experiment comes from
the libgtop that was used to collect the CPU usage metrics, the
libc and the stack allocation for the two threads of the process.

We also experimented with the CPU usage impact of the
RTGDE framework in this evaluation and found that we had
to increase the decision rate from 2 to 100 Hz to produce a
visible impact on CPU performance of 2% on one core of our
i7 860. One iteration of the decision process takes 43.95 µs in
average with a standard deviation of 13.19 µs.

We decided to compare the memory usage and real-time
worthiness of our proposition compared to MATLAB as it
has often been used by researchers to implement decision
engines [11][10]. We compared our proposition on Linux using
GNU Octave which is an open source alternative compatible
with MATLAB. To compare our proposition and an imple-
mentation made in Octave, we wrote the minimum application
possible that executes code one thousand times per second in
our proposition and in Octave, respectively found in [14] under
the name “test minimal.c” and “matlab min.m”.

To test the real-time worthiness of the two solutions, we
compared the delay between the moment when the application
requested to resume execution, called scheduling jitter, and
the standard deviation of this jitter over 30 seconds when our
testing Linux system was idle. The results highly depend on
the CPU scheduler but also reflect any additional overhead the
language is putting on real-time constraints. They are visible in
Figure 14 where we can see that Octave’s jitter is almost 50%
higher than the one found in the C language used to implement
our framework. Octave’s standard deviation in the scheduling
delay is more than 60% higher than C’s.

0 50 100 150 200

RTGDE

Octave

Scheduling jitter (µs)

Figure 14. Jitter in the scheduling of decision process on Linux. Data
collected during 30 seconds when the system is idle.

In the second test, we measure the memory usage of both
solutions and split it in two categories. The “shared” memory
usage comes from the different libraries used by both solutions,
named this way because they can be shared in memory with
other processes. On the contrary, the “private” memory usage is
memory which is exclusively used by the program. The results
of this test can be found in Figure 15 where we can see that
Octave’s private memory usage is 25.3MB along with 7.4MB
worth of libraries that could be shared with other processes. On
the other hand, our proposition has a private memory footprint



more than 150 times lower (168kB) than Octave’s while its
shared memory footprint is more than 15 times lower (1.4MB).

0 0.5 1 1.5 2 2.5 3 3.5

·104

RTGDE

Octave

Memory usage (kB)

Private Shared

Lower is better

Figure 15. Minimum memory usage when using RTGDE or Octave to
implement the decision engine

A comparative performance evaluation of MATLAB and
C++ was carried out for plot generation and it was found that
C++ was faster and more versatile [16]. C being a sub-set of
C++, it should share the same characteristics.

Through this evaluation, we demonstrated that it is possible
to implement a complex performance level selection at run-
time on an heterogeneous CPU architecture by using our
proposed flowgraph and framework. We also demonstrated that
the framework’s CPU and memory footprint can be negligible,
even for mobile devices, contrarily to solutions found in the
state of the art which are mostly based on MATLAB.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a generic flowgraph for run-
time decision making. We implemented it in a framework and
evaluated it by successfully implementing run-time algorithms
for network interface and CPU performance level selection.

On Linux, the RTGDE framework requires less than 58kB
of storage memory, uses less than 100 kB of RAM for typical
flowgraphs and has virtually no impact on CPU performance
when not generating gnuplot graphs in real time. This is to
be compared with other solutions such as MATLAB that can
use up to 150 times as much as RAM as our proposition. This
makes this decision flowgraph and framework very suitable
for mobile devices. The implementation of this framework has
been achieved in about 4000 lines of C code with only one
dependency to pthread and is available at https://github.com/
mupuf/RTGDE under the Open Source MIT license.

Future work include adding more generic prediction algo-
rithms, evaluating the flowgraph on more scenarios and writing
tools to help generating the code for setting up the prediction
engine. Thanks to the modular nature of the framework, a
website could also be written to allow researchers to share their
prediction algorithms or HW models for radios, CPUs or GPUs
to limit the amount of code that needs to be written to set-up
the prediction engine. Currently, researchers have to implement
HW models for every hardware used in their decision-making.
Predictions could also be scored by RTGDE and be used to
automatically select the most-accurate prediction system. The
score could also help debugging poor prediction issues.

ACKNOWLEDGMENT

This work has been funded by the cluster of excellence
CPU, University of Bordeaux. Part of this work was performed

while Martin Peres was an invited researcher at the IMAGINE
Research in the School of Electrical Engineering and Computer
Science, University of Ottawa, Canada under the supervision
of Professor Ahmed Karmouch.

REFERENCES

[1] P. McKenney, “A big.LITTLE scheduler update,” Jun. 2012. [Online].
Available: https://lwn.net/Articles/501501/

[2] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: the
laws of diminishing returns,” in Proceedings of the 2010 international
conference on Power aware computing and systems, ser. HotPower’10.
Berkeley, CA, USA: USENIX Association, 2010, p. 1–8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924920.1924921

[3] M. Handley, O. Bonaventure, C. Raiciu, and A. Ford, “TCP extensions
for multipath operation with multiple addresses,” Jan. 2013. [Online].
Available: https://tools.ietf.org/html/rfc6824

[4] Olivier Bonaventure, “Apple seems to also believe in multipath
TCP,” Sep. 2013. [Online]. Available: https://perso.uclouvain.be/
olivier.bonaventure/blog/html/2013/09/18/mptcp.html

[5] J. Choi, S. Govindan, J. Jeong, B. Urgaonkar, and A. Sivasubramaniam,
“Power consumption prediction and power-aware packing in
consolidated environments,” IEEE Transactions on Computers,
vol. 59, no. 12, pp. 1640–1654, 2010. [Online]. Available:
http://csl.cse.psu.edu/publications/power-tc10.pdf

[6] J. Ylitalo, T. Jokikyyny, A. J. Tuominen, and J. Laine,
“Dynamic network interface selection in multihomed mobile
hosts,” HAWAII INTL. CONF. ON SYSTEM SCIENCES (HICSS,
vol. 9, p. 315, 2003. [Online]. Available: http://citeseer.uark.edu:
8080/citeseerx/viewdoc/summary?doi=10.1.1.99.9062

[7] L. Liu, Y. Wei, Y. Bi, and J. Song, “Cooperative transmission and
data scheduling mechanism of multiple interfaces in multi-radio access
environment,” in Global Mobile Congress 2009, 2009, pp. 1–5.

[8] B. Hu, S. Chen, W. Ye, and X. Zhan, “An autonomic interface selection
mechanism for multi-interface host,” in 2012 8th International Confer-
ence on Wireless Communications, Networking and Mobile Computing
(WiCOM), 2012, pp. 1–5.

[9] M. Chowdhury, Y. M. Jang, C. S. Ji, S. Choi, H. Jeon, J. Jee, and
C. Park, “Interface selection for power management in UMTS/WLAN
overlaying network,” in 11th International Conference on Advanced
Communication Technology, 2009. ICACT 2009, vol. 01, 2009, pp. 795–
799.

[10] P.-N. Tran and N. Boukhatem, “SiPiA: The shortest distance to positive
ideal attribute for interface selection,” in Telecommunication Networks
and Applications Conference, 2008. ATNAC 2008. Australasian, 2008,
pp. 175–179.

[11] M. Sowmia Devi and P. Agrawal, “Dynamic interface selection in
portable multi-interface terminals,” in IEEE International Conference
on Portable Information Devices, 2007. PORTABLE07, 2007, pp. 1–5.

[12] G. Castignani, N. Montavont, and A. Arcia-Moret, “Multi-objective
optimization model for network selection in multihomed devices,” in
2013 10th Annual Conference on Wireless On-demand Network Systems
and Services (WONS), Mar. 2013, pp. 113–115.

[13] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA —
a platform and programming language independent interface for
search algorithms,” in Evolutionary Multi-Criterion Optimization,
ser. Lecture Notes in Computer Science, C. M. Fonseca, P. J.
Fleming, E. Zitzler, L. Thiele, and K. Deb, Eds. Springer Berlin
Heidelberg, Jan. 2003, no. 2632, pp. 494–508. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-36970-8 35

[14] Martin Peres, “mupuf/RTGDE.” [Online]. Available: https://github.
com/mupuf/RTGDE

[15] tcpdump, “Tcpdump/libpcap public repository,” 1987. [Online].
Available: http://www.tcpdump.org/

[16] Tyler Andrews, “Computation time comparison between
matlab and c++ using launch windows,” Jun. 2012.
[Online]. Available: http://digitalcommons.calpoly.edu/cgi/viewcontent.
cgi?article=1080&context=aerosp


