A run-time generic decision framework for power and performance management on mobile devices

Martin Peres, Mohamed Aymen Chalouf, Francine Krief

LaBRI, University of Bordeaux

11/12/2014

Introduction	State of the art	Contribution: RTGDE	Conclusion
Summany			
Juilliary			

2 State of the art

3 Contribution: A Run-Time Generic Decision Engine (RTGDE)

4 Evaluation

Introduction ●0	State of the art 00	Contribution: RTGDE	Evaluation 00	Conclusion
Introductio	on			

Modern devices have multiple ways of doing the same thing

- Multiple network interfaces (4G/Wifi/Ethernet);
- Multiple processor types (ARM's BIG.Little).

Problem: How to select the most efficient processor/interface?

- Each way can become the most efficient one;
- Static configurations cannot yield the best efficiency.

Introduction	State of the art	Contribution: RTGDE		Conclusion	
00		000000			
1					
Introduction					

Migrations/handovers possible

- BIG.Little processors: task migration in a few ms;
- Network: Live sockets migration possible using MPTCP.

Solution

• Need for a run-time decision engine for power management.

Challenges

- Need real-time requirements;
- Need to be able to compare arbitrary hardware models.

Introduction 00	State of the art	Contribution: RTGDE	Evaluation 00	Conclusion 00
Summarv				

2 State of the art

3 Contribution: A Run-Time Generic Decision Engine (RTGDE)

4 Evaluation

Introduction	State of the art	Contribution: RTGDE	Evaluation	Conclusion
00	●0		00	00
State of t	he art for rur	n-time decision e	ngines	

Decision engines are (among others) used in

- Multi-homed devices;
- Workload-consolidations in data centres;
- Dynamic Voltage/Frequency Scaling for CPUs/GPUs.

Decision engines are mostly implemented with

- High-level languages such as Matlab;
- Linear-optimisation frameworks;
- Genetic algorithms.

Problems: Approaches hard to bound in

- CPU and RAM usage;
- Execution time.

00	State of the art O●	000000	OO	00
State of	the art for rur	n-time decision e	ngines	

PISA

- Provides application-agnostic optimisation algorithms;
- Defines an interface between the user and the algorithms;
- Is not a framework and does not export debugging helpers.

Proposition: RTGDE provides

- A generic flowgraph for run-time decision making;
- A framework around this flowgraph written in C;
- A way to compare different pieces of hardware;
- Debugging helpers to understand decisions.

Introduction	State of the art	Contribution: RTGDE	Evaluation	Conclusion
00	00		00	00
Summary				

2 State of the art

3 Contribution: A Run-Time Generic Decision Engine (RTGDE)

4 Evaluation

- RTGDE proposes a 5-staged flowgraph:
 - Metrics: Describe the current state of the system;
 - Predictions: Foresee the evolution of the state of the system;
 - HW models: Propose a configuration and its impact;
 - Scoring: Evaluate the impact of the model on predictions;
 - Decision: Select the most efficient HW model.

Decision Flowgraph

Introduction 00	State of the art	Contribution: RTGDE	Evaluation 00	Conclusion 00
RTGDE : A	generic	Run-Time Generic	Decision	Engine

Metrics

- Should represent accurately the state of the system;
- Should have an asynchronous data submission.

Predictions

- Predict the evolution of a metric or create a new one;
- Can take multiple metrics as an input;
- Can specify a constraint that the HW model should enforce;
- Store its output into a graph instead of a formula;
- Generate 3 outputs: The min., average and max. predictions.

Introduction	State of the art	Contribution: RTGDE	Evaluation	Conclusion
00		000€00	00	00
RTGDE : A	generic	Run-Time Generic	Decision	Engine

HW models

- Model the behaviour of a piece of hardware (Example: a NIF);
- Take as an input all the predictions/constraints;
- Propose a configuration for the HW modelled;
- Evaluate its impact on all the predictions/constraints;

Decision

- Takes the output of all HW models and their scores;
- Calls a user-defined callback with the result of the decision;
- Can be implemented using a Finite State Machine (FSM).

Introduction	State of the art	Contribution: RTGDE	Evaluation	Conclusion
00	00		00	00
Summary				

1 Introduction

2 State of the art

3 Contribution: A Run-Time Generic Decision Engine (RTGDE)

4 Evaluation

Introduction 00	State of the art	Contribution: RTGDE	Evaluation •0	Conclusion 00
Evaluatio	ons of the fran	nework		

Genericity of the framework

- Implements a generic flowgraph for decision-making;
- Demonstrated through 2 scenarios:
 - Network interface selection;
 - BIG.Little processor type selection.

Evoluatio	one of the free	nowork		
			00	
Introduction	State of the art	Contribution: RTGDE	Evaluation	Conclusion

Low CPU usage

- Test performed on an Intel i7 860;
- Execution time of the processor selection flowgraph:
 - 43.95 μ s (std = 13.19);
 - 0.004395% of the CPU time.

• Matlab's performance is lower than C++ [Andrews2012].

Real-time worthinessOctave \bigcirc RTGDE \bigcirc 020406080100120140160180200Scheduling jitter (μ s)

Introduction 00	State of the art 00	Contribution: RTGDE	Evaluation 00	Conclusion
Summary				

1 Introduction

2 State of the art

3 Contribution: A Run-Time Generic Decision Engine (RTGDE)

4 Evaluation

Introduction	State of the art	Contribution: RTGDE	Conclusion
			•0
Conclusion	`		
CONCIUSION			

Advantages of the RTGDE framework

- Can execute multiple flowgraphs in parallel in real time;
- Ease debugging and introspection;
- Allow comparing the output of two models having the same interface ⇒ Enable self-optimisation in heterogeneous devices.

Limits

• All the flowgraphs must be independent;

00 00 000000 00	troduction	State of the art	Contribution: RTGDE	Evaluation	Conclusion
	0	00	000000	00	00
Future work	uture wa	ork			

Future work

- Check the genericity of the flowgraph in more scenarios;
- Implement more prediction and selection algorithms;
- Write a website to allow researchers to share their HW models.

Thank you for listening! Any questions?