
1

Intel GFX CI
What services do we provide, our roadmaps, and lessons learnt!

Martin Peres
Sept 20th 2017

2

Agenda

• Introduction: Why CI, and objectives

• State of Intel GFX CI, and future plans

• Lessons learnt

3

Why do we need Continuous Integration (CI)?

● CI allows putting the cost of integration on the person making changes:
○ It scales better with the number of developers!
○ Less time spent on bug fixing in post merge
○ Provides better global understanding to developers

● CI keeps the integration tree in working condition at all time

4

Objectives of CI

● Provides an accurate view of the state of the HW/SW
● Results should be:

○ Transparent: Should contain the full HW and SW configuration
○ Fast: Basic results in under 30 minutes, complete ones in half a day
○ Visible: make the results public and hard to miss (reply in ML)
○ Stable: noise level should be zero (be aggressive at blacklisting unstable tests)

5

Intel GFX CI

6

Intel GFX CI - https://intel-gfx-ci.01.org

Current state
● Provide timely, public, stable and transparent results for:

○ Trees:
■ Pre-merge: DRM-tip, IGT
■ Post-merge: DRM-tip, Linus’ tree, Linux-next, *-fixes, drm-internal

○ Machines (total of 40 systems / 19 different platforms (Gen 3 to current))
■ GDG (Gen3, 2004) -> GLK (not released yet)
■ Sharded machines: 6 KBL, 6 HSW, 6 SNB, 8 APL
■ SKL Xeon
■ GVT-d BDW and SKL (Virtualization)

○ Test suites:
■ IGT:

● Fast-feedback: 279 tests, ran on all machines
● Full KMS + some GEM tests: ~2500 tests, ran on sharded machines

○ Throughput
■ From 22k tests/day (Aug 2016) to +400k tests/day (Aug 2017) (see next slide)
■ Bug filing: usually under 1h during working hours

7

CI throughput per day (from 08/2016 until today)

8

DEMO!

9

Intel-GFX CI: Roadmap
Plans

● Provide timely, visible, stable and transparent results for:
● Machines:

○ Keep adding new platforms / hardware configurations
○ More display types (including chamelium)

● Test suites:
○ Full IGT on all machines. Requires:

■ Developers to improve IGT to run in < 6 hours (kms, gem, prime)
■ Squashing all patch series in one tree
■ Auto-bisect issues to the offending patch series

○ Performance and rendering. Requires:
■ EzBench support
■ Better prioritization of tasks for machine time

10

Contacts
asdadsadasdsadsadasdsadasdsadsadasdasdasdasdasdTomi Sarvela

● Infrastructure and most of the automation software

Martin Peres

● Ezbench, CI bug log, bug filing

Arkadiusz Hiler

● IGT maintainer, back up for Tomi, Pre-silicon CI

Petri Latvala

● IGT maintainer, Ezbench support

11

Lessons learnt

12

Key findings to replicate our system

● What is not tested continuously is broken
● Bugzilla is not a good tool to track test failures
● Noise is the enemy #1:

○ Treat every failure as a bug
○ Run tests in a loop
○ Collect failure statistics and history!

● Make sure developers own the CI system
○ The CI team works for developers
○ Developers suggest improvements to the systems and improve test suites

● Have automated metrics for everything!
● Took us a year to get the basic IGT testing stable on 2004+ hardware

13

What is needed for HW CI
● Requirements for making a useful CI system:

○ Infrastructure:
■ Physical space
■ Enough power and cooling
■ Power cutters for all machines
■ Reliable network (the simpler the better)

○ Hardware:
■ Machines with different configurations (chipsets, RAM, connectors, screens)
■ Ways to resume the machine (RTC wake, …)

○ Software:
■ Scheduling jobs (Jenkins, ...)
■ Graphics stack compilation automation
■ Automatic deployment and reboot
■ External watchdog

○ Humans:
■ Qualified engineers to make bugs
■ Developers to act quickly on bug reports

14

Challenges of doing kernel CI

● Booting garbage kernels:
○ Boot, network, and/or filesystem broken

● Getting traces out, especially during suspend/resume:
○ Kernel parameters: use “nmi_watchdog=panic,auto panic=1 softdog.soft_panic=1”
○ Use pstore for EFI-capable HW, serial consoles for others

● Dealing with memory corruptions:
○ Will trash your partitions
○ Need automated script to re-deploy machines

15

CI Bootstrapping

● Step 0: Gather hardware, and test suites
● Step 1: Run the test suites automatically on this hardware
● Step 2: Report failures to a tool that will check if the failure is known
● Step 3: File bugs about unknown failures
● Step 4: When no new failure happen for some time, add to pre-merge
● Step 5: Goto step 0

16

Conclusion

CI is good!

Join us, and let’s collaborate!

1717

Questions / discussion

