
Making bare-metal
testing accessible to

every developer
Martin Roukala (néé Peres), Valve contractor

1

Who am I?

Martin Roukala (used to be Martin Peres)
Freelancer at MuPuF TMI
Valve contractor
Previous projects: Intel GFX, Nouveau

2

Why?

3

Why build a bare-metal test farm?

GitLab brought building and unit-testing capabilities for all drivers \o/
Won't prevent all regressions though...

Hardware can be emulated, but models are not imperfect
Users run your driver on hardware, not your model
Integration testing requires HW missing from GitLab public runners

Your farm increases your productivity:
Never lose your context when your change crashes your machine
You can test your changes on different generations of HW in one go
You can debug issues using interactive sessions, like you would on your PC
You can let colleagues test their changes on rare HW

4

Because it's good for you...

and the project!

5

High level requirements

Needs to be more convenient than whatever developers currently use:
Easy/fast to add the machine to the farm
Easy/fast to switch hardware without needing reconfiguration
Full flexibility of deployment
The work done by someone shouldn't influence your work
Maintenance time: ~1h per week

High availability: Resilient to short power / network outages
Minimal security risks (no botnet, crypto mining, home spying, ...)
Minimal risks for the flat/house/building

6

Solution #1: Use containers, not OSes
Benefits:

Go distro-less with , an initramfs with a declarative interface
No need to install/maintain/repair your test machine's distros!

Make every boot fresh, one job cannot influence the next one
Use volumes to cache data between executions (backed-up in MinIO)

Fast boot by caching all the container layers on the test machine
Only download what has changed, not the whole disk image!

Re-use the same containers across all machines
Bonus points for re-using the ones you already made for your CI

boot2container

7

https://gitlab.freedesktop.org/mupuf/boot2container

Solution #2: Automate everything

Auto-deploy using PXE/network boot
Auto-enrolling:

Auto-discover the hardware and assign tags
Auto-test the hardware's boot reliability
Auto-expose the machine on GitLab when passing the test
Auto-re-enrollment if the machine changed its tags

Auto-discovery:
Serial port -> machine (SALAD)

Self-tests: Make it clear when assumptions are broken

Limits?

How to turn on/off the machine

8

Solution #3: Network security

Put your CI infra in a separate network from your office/home
Use a VPN to connect to the farm's gateway
Block all un-needed ports and protocols at the router's level
Whitelist the accepted domain names/IPs:

*.freedesktop.org / distro repo / docker hub / Quay / ...
Give two network adapters to your gateway:

Public: Connected to your PDU and the internet
Private: Connected to your test machines (no routing to public)

9

Solution #4: Power cutting

Works around pesky hardware state
by always cold-booting

10 . 1

Solution #4: Power cutting

Works around pesky hardware state
by always cold-booting

Can also be used as a "let's boot up" signal

10 . 1

Solution #4: Power cutting

Pros:

Industrial grade
Guaranteed switching cycles
Controllable using SNMP

Cons:

~$500 new
~$200 on ebay

Switchable Power Delivery Unit

10 . 2

Solution #4: Power cutting

Pros:

Cheap
$35 for the gateway
~$15 per socket

Easy to find everywhere
Protocol documented

Cons:

Adding a new socket is annoying
Wireless (could be a pro too)
No rating on the switching cycles
Inconvenient protocol

Ikea's TRÅDFRI

10 . 3

Solution #4: Power cutting

Pros:

Cheap (20-30 euros)
Measures power usage
REST / MQTT
Easy to integrate with

Cons:

Wireless (can be a pro)
No switching ratings

Shelly Plugs

10 . 4

Solution #4: Power cutting

Pros:

One cable for both
network and power

Cons:

Only works for single-board
computers
May require an adapter on the
receiving side
Much more expensive switch

PoE Network Switch

10 . 5

Solution #5: Uninterruptible power supply

Protects your hardware from surges and micro cuts
To be used on all your networking equipment, and test machines
WARNING: Check the power rating!

11

Switchable

power

supply

Networking

Internet

Serial

console

12

OK, but how does it look in
practice?

13

UPS

Ventilation

Metallic
shelf

Screen +
KVM

Keyboard

Storage

PDU
Network
switches

14

UPS

Home
router

Patch
panel

ISP switch

IOT
switch

15

Fiber
modem

Fiber To
The

Home

16

What about the promised
1k€?

17

Bill of material
Gateway (525€):

UPS: 150€
USB Switch (10 ports): 25€
Network Router (wireguard capable): ~100€
Network switch: ~150€
1TB NVME/SSD drive: ~100€
An old machine: Free

Per machine (~100€):
Shelly plug: 30€
USB 2 RS232 adapter: 20€
Ethernet cable: 5€
Storage: 30€
Your DUT!

Total: 525 + 5 * 100: ~1k€
18

Questions?

19

