
Bare-metal testing using
containerised test suites

Martin Roukala (Valve contractor)

Who am I?

Martin Roukala (néé Peres)
Freelancer at MuPuF TMI and Valve contractor

Who am I?

Martin Roukala (néé Peres)
Freelancer at MuPuF TMI and Valve contractor

Active in the graphics subsystem:

ex-member of the X.Org of directors (2013-2019)
GPU focus: AMD, Intel GFX, Nouveau

Who am I?

Martin Roukala (néé Peres)
Freelancer at MuPuF TMI and Valve contractor

Active in the graphics subsystem:

ex-member of the X.Org of directors (2013-2019)
GPU focus: AMD, Intel GFX, Nouveau

My mission: Production-ready upstream Linux

Who am I?

Martin Roukala (néé Peres)
Freelancer at MuPuF TMI and Valve contractor

Active in the graphics subsystem:

ex-member of the X.Org of directors (2013-2019)
GPU focus: AMD, Intel GFX, Nouveau

My mission: Production-ready upstream Linux

Linux GFX testing experience:

 / : Running IGT test suite on 100+ machines
: Auto-bisecter of performance/unit test/image changes

Intel GFX CI CI Bug Log
EzBench

https://intel-gfx-ci.01.org/
https://gitlab.freedesktop.org/gfx-ci/cibuglog/
https://gitlab.freedesktop.org/gfx-ci/ezbench

Why care about rootfs generation?

To prevent regressions, a lot of test suites need to be run on a lot of HW
But:

Why care about rootfs generation?

To prevent regressions, a lot of test suites need to be run on a lot of HW
But:

Different hardware are found in different CI farms

Why care about rootfs generation?

To prevent regressions, a lot of test suites need to be run on a lot of HW
But:

Different hardware are found in different CI farms
Different CI farms have different interfaces / requirements

Why care about rootfs generation?

To prevent regressions, a lot of test suites need to be run on a lot of HW
But:

Different hardware are found in different CI farms
Different CI farms have different interfaces / requirements
Rebooting to test-suite-specific rootfs is slow, and compiling multiple test
suites in one rootfs can be tricky (GFX has loads of deps)

Why care about rootfs generation?

To prevent regressions, a lot of test suites need to be run on a lot of HW
But:

Different hardware are found in different CI farms
Different CI farms have different interfaces / requirements
Rebooting to test-suite-specific rootfs is slow, and compiling multiple test
suites in one rootfs can be tricky (GFX has loads of deps)

All of this makes running new test suites in one or more CI systems difficult

Quick comparison

Rootfs

Traditional method of deploying the test
environment

OCI containers

Quick comparison

Rootfs

Traditional method of deploying the test
environment

OCI containers

Traditionally used for unit testing,
and in the web world

Quick comparison

Rootfs

Traditional method of deploying the test
environment
Can be created using:

 / / / ...
 / / ...

Yocto buildroot kci_rootfs
Debos virt-builder

OCI containers

Traditionally used for unit testing,
and in the web world

https://www.yoctoproject.org/
https://buildroot.org/
https://github.com/kernelci/kernelci-core/blob/main/doc/kci_rootfs.md
https://github.com/go-debos/debos
https://ostechnix.com/quickly-build-virtual-machine-images-with-virt-builder/

Quick comparison

Rootfs

Traditional method of deploying the test
environment
Can be created using:

 / / / ...
 / / ...

Yocto buildroot kci_rootfs
Debos virt-builder

OCI containers

Traditionally used for unit testing,
and in the web world
Can be created using:

 / docker podman
buildah

https://www.yoctoproject.org/
https://buildroot.org/
https://github.com/kernelci/kernelci-core/blob/main/doc/kci_rootfs.md
https://github.com/go-debos/debos
https://ostechnix.com/quickly-build-virtual-machine-images-with-virt-builder/
https://docs.docker.com/get-docker/
https://podman.io/
https://buildah.io/

Quick comparison

Rootfs

Traditional method of deploying the test
environment
Can be created using:

 / / / ...
 / / ...

Yocto buildroot kci_rootfs
Debos virt-builder

Generates a full disk image
Self-contained
Slower: The full image needs flashing
Low portability (modules, firmwares)

OCI containers

Traditionally used for unit testing,
and in the web world
Can be created using:

 / docker podman
buildah

https://www.yoctoproject.org/
https://buildroot.org/
https://github.com/kernelci/kernelci-core/blob/main/doc/kci_rootfs.md
https://github.com/go-debos/debos
https://ostechnix.com/quickly-build-virtual-machine-images-with-virt-builder/
https://docs.docker.com/get-docker/
https://podman.io/
https://buildah.io/

Quick comparison

Rootfs

Traditional method of deploying the test
environment
Can be created using:

 / / / ...
 / / ...

Yocto buildroot kci_rootfs
Debos virt-builder

Generates a full disk image
Self-contained
Slower: The full image needs flashing
Low portability (modules, firmwares)

OCI containers

Traditionally used for unit testing,
and in the web world
Can be created using:

 / docker podman
buildah

Generates a set of overlays (layers)
Requires platform setup
Faster: the base OS is cached
High portability

https://www.yoctoproject.org/
https://buildroot.org/
https://github.com/kernelci/kernelci-core/blob/main/doc/kci_rootfs.md
https://github.com/go-debos/debos
https://ostechnix.com/quickly-build-virtual-machine-images-with-virt-builder/
https://docs.docker.com/get-docker/
https://podman.io/
https://buildah.io/

Your unit tests already run
in a container...

Your unit tests already run
in a container...

Why not reuse it for bare-
metal testing?

How to boot your container?

Containers require platform initialization to be done
Do we need another rootfs for this?

How to boot your container?

Containers require platform initialization to be done
Do we need another rootfs for this?

Boot2container

What's boot2container?

A small (< 20 MB) and PXE-bootable initramfs ()
A declarative configuration via the kernel command line
Features:

url

https://gitlab.freedesktop.org/mupuf/boot2container

What's boot2container?

A small (< 20 MB) and PXE-bootable initramfs ()
A declarative configuration via the kernel command line
Features:

url

Network: DHCP & NTP

https://gitlab.freedesktop.org/mupuf/boot2container

What's boot2container?

A small (< 20 MB) and PXE-bootable initramfs ()
A declarative configuration via the kernel command line
Features:

url

Network: DHCP & NTP
Cache drive:

Auto-selection, or configurable
Auto-formating, if needed
Swap file

https://gitlab.freedesktop.org/mupuf/boot2container

What's boot2container?

A small (< 20 MB) and PXE-bootable initramfs ()
A declarative configuration via the kernel command line
Features:

url

Network: DHCP & NTP
Cache drive:

Auto-selection, or configurable
Auto-formating, if needed
Swap file

Volumes:
mirroring from an S3-compatible storage
local encryption (fscrypt)
expiration

https://gitlab.freedesktop.org/mupuf/boot2container

Running IGT using boot2container

b2c.cache_device=auto b2c.ntp_peer=auto

b2c.minio="job,{{ minio_url }},{{ job_bucket_access_key }},{{ job_bucket_secret_key }}"

b2c.volume="job,mirror=job/{{ job_bucket }},pull_on=pipeline_start,auto_push,expiration=pipeline_end"

b2c.container="-ti docker://registry.freedesktop.org/mupuf/valve-infra/machine_registration:latest check"

b2c.container="-t -v job:/results docker://registry.freedesktop.org/drm/igt-gpu-tools/igt:master igt_runner -o /results"

console={{ local_tty_device }},115200 earlyprintk=vga,keep loglevel=6

Kernel command line

Need to run an extra test
suite?

Need to run an extra test
suite?

Add another b2c.container in the
kernel command line!

Limitation of containers

Not applicable to platforms with less than 64 MB of RAM
More?

Open questions

How can we standardize on the test result format?
Anything else?

Thanks for listening!

