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Linux GFX testing experience:

 / : Running IGT test suite on 100+ machines
: Auto-bisecter of performance/unit test/image changes

Intel GFX CI CI Bug Log
EzBench

https://intel-gfx-ci.01.org/
https://gitlab.freedesktop.org/gfx-ci/cibuglog/
https://gitlab.freedesktop.org/gfx-ci/ezbench
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But:

Different hardware are found in different CI farms
Different CI farms have different interfaces / requirements
Rebooting to test-suite-specific rootfs is slow, and compiling multiple test
suites in one rootfs can be tricky (GFX has loads of deps)

All of this makes running new test suites in one or more CI systems difficult
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OCI containers

Traditionally used for unit testing,
and in the web world
Can be created using:

 / docker podman
buildah

Generates a set of overlays (layers)
Requires platform setup
Faster: the base OS is cached
High portability

https://www.yoctoproject.org/
https://buildroot.org/
https://github.com/kernelci/kernelci-core/blob/main/doc/kci_rootfs.md
https://github.com/go-debos/debos
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Why not reuse it for bare-
metal testing?
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What's boot2container?

A small (< 20 MB) and PXE-bootable initramfs ( )
A declarative configuration via the kernel command line
Features:

url

Network: DHCP & NTP
Cache drive:

Auto-selection, or configurable
Auto-formating, if needed
Swap file

Volumes:
mirroring from an S3-compatible storage
local encryption (fscrypt)
expiration

https://gitlab.freedesktop.org/mupuf/boot2container


Running IGT using boot2container

b2c.cache_device=auto b2c.ntp_peer=auto

b2c.minio="job,{{ minio_url }},{{ job_bucket_access_key }},{{ job_bucket_secret_key }}"

b2c.volume="job,mirror=job/{{ job_bucket }},pull_on=pipeline_start,auto_push,expiration=pipeline_end"

b2c.container="-ti docker://registry.freedesktop.org/mupuf/valve-infra/machine_registration:latest check"

b2c.container="-t -v job:/results docker://registry.freedesktop.org/drm/igt-gpu-tools/igt:master igt_runner -o /results"

console={{ local_tty_device }},115200 earlyprintk=vga,keep loglevel=6

Kernel command line
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Need to run an extra test
suite?

Add another b2c.container in the
kernel command line!



Limitation of containers

Not applicable to platforms with less than 64 MB of RAM
More?



Open questions

How can we standardize on the test result format?
Anything else?



Thanks for listening!


